query.go 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289
  1. package edb_data
  2. import (
  3. "errors"
  4. "fmt"
  5. "hongze/hongze_yb/global"
  6. "hongze/hongze_yb/utils"
  7. "strconv"
  8. "time"
  9. )
  10. // GetEdbDataTableName 指标数据->存储表
  11. func GetEdbDataTableName(source, subSource int) (tableName string) {
  12. switch source {
  13. case utils.DATA_SOURCE_THS:
  14. tableName = "edb_data_ths"
  15. case utils.DATA_SOURCE_WIND:
  16. if subSource == utils.DATA_SUB_SOURCE_DATE {
  17. tableName = "edb_data_wind_wsd"
  18. } else {
  19. tableName = "edb_data_wind"
  20. }
  21. case utils.DATA_SOURCE_PB, utils.DATA_SOURCE_PB_FINANCE: //彭博经济数据、彭博财务数据
  22. tableName = "edb_data_pb"
  23. case utils.DATA_SOURCE_CALCULATE:
  24. tableName = "edb_data_calculate"
  25. case utils.DATA_SOURCE_CALCULATE_LJZZY:
  26. tableName = "edb_data_calculate_ljzzy"
  27. case utils.DATA_SOURCE_CALCULATE_TBZ:
  28. tableName = "edb_data_calculate_tbz"
  29. case utils.DATA_SOURCE_CALCULATE_TCZ:
  30. tableName = "edb_data_calculate_tcz"
  31. case utils.DATA_SOURCE_CALCULATE_NSZYDPJJS:
  32. tableName = "edb_data_calculate_nszydpjjs"
  33. case utils.DATA_SOURCE_MANUAL:
  34. tableName = "edb_data_manual"
  35. case utils.DATA_SOURCE_LZ:
  36. tableName = "edb_data_lz"
  37. case utils.DATA_SOURCE_YS:
  38. tableName = "edb_data_ys"
  39. case utils.DATA_SOURCE_CALCULATE_HBZ:
  40. tableName = "edb_data_calculate_hbz"
  41. case utils.DATA_SOURCE_CALCULATE_HCZ:
  42. tableName = "edb_data_calculate_hcz"
  43. case utils.DATA_SOURCE_CALCULATE_BP:
  44. tableName = "edb_data_calculate_bp"
  45. case utils.DATA_SOURCE_GL:
  46. tableName = "edb_data_gl"
  47. case utils.DATA_SOURCE_ZZ:
  48. tableName = "edb_data_zz"
  49. case utils.DATA_SOURCE_DL:
  50. tableName = "edb_data_dl"
  51. case utils.DATA_SOURCE_SH:
  52. tableName = "edb_data_sh"
  53. case utils.DATA_SOURCE_CFFEX:
  54. tableName = "edb_data_cffex"
  55. case utils.DATA_SOURCE_SHFE:
  56. tableName = "edb_data_ine"
  57. case utils.DATA_SOURCE_GIE:
  58. tableName = "edb_data_gie"
  59. case utils.DATA_SOURCE_CALCULATE_ZJPJ:
  60. tableName = "edb_data_calculate_zjpj"
  61. case utils.DATA_SOURCE_CALCULATE_TIME_SHIFT:
  62. tableName = "edb_data_calculate_time_shift"
  63. case utils.DATA_SOURCE_CALCULATE_LJZTBPJ:
  64. tableName = "edb_data_calculate_ljztbpj"
  65. case utils.DATA_SOURCE_LT:
  66. tableName = "edb_data_lt"
  67. case utils.DATA_SOURCE_COAL:
  68. tableName = "edb_data_coal"
  69. case utils.DATA_SOURCE_PYTHON:
  70. tableName = "edb_data_python"
  71. case utils.DATA_SOURCE_GOOGLE_TRAVEL:
  72. tableName = "edb_data_google_travel"
  73. case utils.DATA_SOURCE_PREDICT_CALCULATE:
  74. tableName = "edb_data_predict_calculate"
  75. case utils.DATA_SOURCE_PREDICT_CALCULATE_TBZ:
  76. tableName = "edb_data_predict_calculate_tbz"
  77. case utils.DATA_SOURCE_PREDICT_CALCULATE_TCZ:
  78. tableName = "edb_data_predict_calculate_tcz"
  79. case utils.DATA_SOURCE_MYSTEEL_CHEMICAL:
  80. tableName = "edb_data_mysteel_chemical"
  81. case utils.DATA_SOURCE_CALCULATE_CJJX:
  82. tableName = "edb_data_calculate_cjjx"
  83. case utils.DATA_SOURCE_EIA_STEO:
  84. tableName = "edb_data_eia_steo"
  85. case utils.DATA_SOURCE_CALCULATE_NHCC:
  86. tableName = "edb_data_calculate_nhcc"
  87. case utils.DATA_SOURCE_COM_TRADE:
  88. tableName = "edb_data_com_trade"
  89. case utils.DATA_SOURCE_PREDICT_CALCULATE_NSZYDPJJS:
  90. tableName = "edb_data_predict_calculate_nszydpjjs"
  91. case utils.DATA_SOURCE_CALCULATE_ADJUST:
  92. tableName = "edb_data_calculate_adjust"
  93. case utils.DATA_SOURCE_SCI:
  94. tableName = "edb_data_sci"
  95. case utils.DATA_SOURCE_PREDICT_CALCULATE_LJZZY:
  96. tableName = "edb_data_predict_calculate_ljzzy"
  97. case utils.DATA_SOURCE_PREDICT_CALCULATE_TIME_SHIFT:
  98. tableName = "edb_data_predict_calculate_time_shift"
  99. case utils.DATA_SOURCE_PREDICT_CALCULATE_ZJPJ:
  100. tableName = "edb_data_predict_calculate_zjpj"
  101. case utils.DATA_SOURCE_PREDICT_CALCULATE_LJZTBPJ:
  102. tableName = "edb_data_predict_calculate_ljztbpj"
  103. case utils.DATA_SOURCE_PREDICT_CALCULATE_NHCC:
  104. tableName = "edb_data_predict_calculate_nhcc"
  105. case utils.DATA_SOURCE_PREDICT_CALCULATE_CJJX:
  106. tableName = "edb_data_predict_calculate_cjjx"
  107. case utils.DATA_SOURCE_PREDICT_CALCULATE_HBZ:
  108. tableName = "edb_data_predict_calculate_hbz"
  109. case utils.DATA_SOURCE_PREDICT_CALCULATE_HCZ:
  110. tableName = "edb_data_predict_calculate_hcz"
  111. case utils.DATA_SOURCE_PREDICT_CALCULATE_BP:
  112. tableName = "edb_data_predict_calculate_bp"
  113. case utils.DATA_SOURCE_CALCULATE_JP:
  114. tableName = "edb_data_calculate_jp"
  115. case utils.DATA_SOURCE_CALCULATE_NH:
  116. tableName = "edb_data_calculate_nh"
  117. case utils.DATA_SOURCE_CALCULATE_KSZS:
  118. tableName = "edb_data_calculate_kszs"
  119. case utils.DATA_SOURCE_PREDICT_CALCULATE_JP:
  120. tableName = "edb_data_predict_calculate_jp"
  121. case utils.DATA_SOURCE_PREDICT_CALCULATE_NH:
  122. tableName = "edb_data_predict_calculate_nh"
  123. case utils.DATA_SOURCE_PREDICT_CALCULATE_KSZS:
  124. tableName = "edb_data_predict_calculate_kszs"
  125. case utils.DATA_SOURCE_BAIINFO:
  126. tableName = "edb_data_baiinfo"
  127. case utils.DATA_SOURCE_STOCK_PLANT:
  128. tableName = "edb_data_stock_plant"
  129. case utils.DATA_SOURCE_CALCULATE_CORRELATION:
  130. tableName = "edb_data_calculate_correlation"
  131. case utils.DATA_SOURCE_NATIONAL_STATISTICS:
  132. tableName = "edb_data_national_statistics"
  133. case utils.DATA_SOURCE_CALCULATE_LJZZJ: //累计值转季 -> 61
  134. tableName = "edb_data_calculate_ljzzj"
  135. case utils.DATA_SOURCE_CALCULATE_LJZ: //累计值 -> 62
  136. tableName = "edb_data_calculate_ljz"
  137. case utils.DATA_SOURCE_CALCULATE_LJZNCZJ: //累计值(年初至今) -> 63
  138. tableName = "edb_data_calculate_ljznczj"
  139. case utils.DATA_SOURCE_PREDICT_CALCULATE_LJZZJ: // 预测指标 - 累计值 -> 65
  140. tableName = "edb_data_predict_calculate_ljzzj"
  141. case utils.DATA_SOURCE_PREDICT_CALCULATE_LJZ: //预测指标 - 累计值转季->64
  142. tableName = "edb_data_predict_calculate_ljz"
  143. case utils.DATA_SOURCE_PREDICT_CALCULATE_LJZNCZJ: //预测指标 - 累计值(年初至今) -> 66
  144. tableName = "edb_data_predict_calculate_ljznczj"
  145. case utils.DATA_SOURCE_CALCULATE_STANDARD_DEVIATION: //标准差->67
  146. tableName = "edb_data_calculate_standard_deviation"
  147. case utils.DATA_SOURCE_CALCULATE_PERCENTILE: //百分位->68
  148. tableName = "edb_data_calculate_percentile"
  149. case utils.DATA_SOURCE_PREDICT_CALCULATE_STANDARD_DEVIATION: //预测标准差->69
  150. tableName = "edb_data_predict_ccalculate_standard_deviation"
  151. case utils.DATA_SOURCE_PREDICT_CALCULATE_PERCENTILE: //预测百分位->70
  152. tableName = "edb_data_predict_ccalculate_percentile"
  153. case utils.DATA_SOURCE_FUBAO: //富宝 -> 71
  154. tableName = "edb_data_fubao"
  155. case utils.DATA_SOURCE_CALCULATE_ZSXY:
  156. tableName = "edb_data_calculate_zsxy" // 指数修匀->72
  157. case utils.DATA_SOURCE_PREDICT_CALCULATE_ZSXY:
  158. tableName = "edb_data_predict_calculate_zsxy" // 预测指数修匀->73
  159. case utils.DATA_SOURCE_CALCULATE_ZDYFX:
  160. tableName = "edb_data_calculate_zdyfx" // 自定义分析->74
  161. case utils.DATA_SOURCE_CALCULATE_RJZ: //日均值->75
  162. tableName = "edb_data_calculate_rjz"
  163. default:
  164. tableName = ""
  165. }
  166. return
  167. }
  168. type EdbDataList struct {
  169. EdbDataId int `description:" 指标数据ID"`
  170. EdbInfoId int `description:"指标ID"`
  171. DataTime string `json:"-" description:"数据日期"`
  172. DataTimestamp int64 `description:"数据日期"`
  173. Value float64 `description:"数据值"`
  174. }
  175. type EdbDataItems struct {
  176. Items []*EdbDataList
  177. Year int
  178. BetweenDay int `json:"-" description:"公历与农历之间相差的天数"`
  179. CuttingDataTimestamp int64 `description:"切割的时间戳"`
  180. }
  181. type EdbDataResult struct {
  182. List []*EdbDataItems
  183. }
  184. type QuarterData struct {
  185. Year string
  186. DataList []*EdbDataList
  187. CuttingDataTimestamp int64 `description:"切割的时间戳"`
  188. ChartLegend string
  189. Years string
  190. }
  191. type QuarterXDateItem struct {
  192. StartDate time.Time
  193. EndDate time.Time
  194. ShowName string
  195. ChartLegend string
  196. CuttingDataTimestamp int64 `description:"切割的时间戳"`
  197. }
  198. type SeasonExtraItem struct {
  199. ChartLegend []SeasonChartLegend `description:"自定义的图例名称"`
  200. XStartDate string `description:"横坐标显示的起始日"`
  201. XEndDate string `description:"横坐标显示的截止日"`
  202. JumpYear int `description:"横坐标日期是否跨年,1跨年,0不跨年"`
  203. }
  204. type SeasonChartLegend struct {
  205. Name string
  206. Value string
  207. }
  208. type QuarterDataList []*QuarterData
  209. func (m QuarterDataList) Len() int {
  210. return len(m)
  211. }
  212. func (m QuarterDataList) Less(i, j int) bool {
  213. return m[i].Years < m[j].Years
  214. }
  215. func (m QuarterDataList) Swap(i, j int) {
  216. m[i], m[j] = m[j], m[i]
  217. }
  218. // GetEdbDataList 获取指标数据
  219. func GetEdbDataList(source, subSource, endInfoId int, startDate, endDate string) (list []*EdbDataList, err error) {
  220. tableName := GetEdbDataTableName(source, subSource)
  221. if tableName == "" {
  222. err = errors.New("无效的渠道:" + strconv.Itoa(source))
  223. list = make([]*EdbDataList, 0)
  224. return list, err
  225. }
  226. var pars []interface{}
  227. pars = append(pars, endInfoId)
  228. sql := `SELECT edb_data_id,edb_info_id,data_time,value,data_timestamp FROM %s WHERE edb_info_id = ? `
  229. if startDate != "" {
  230. sql += ` AND data_time >= ? `
  231. pars = append(pars, startDate)
  232. }
  233. if endDate != "" {
  234. sql += ` AND data_time <= ? `
  235. pars = append(pars, endDate)
  236. }
  237. sql += ` ORDER BY data_time ASC `
  238. sql = fmt.Sprintf(sql, tableName)
  239. err = global.MYSQL["data"].Raw(sql, pars...).Scan(&list).Error
  240. // 格式化日期
  241. if len(list) > 0 {
  242. for _, row := range list {
  243. if row.DataTime != "" {
  244. row.DataTime = row.DataTime[:10] // 此处获取的字符串row.DataTime长度有长有短,截取年月日
  245. //tempTime, _ := time.Parse("2006-01-02T00:00:00+08:00", row.DataTime)
  246. //row.DataTime = tempTime.Format(utils.FormatDate)
  247. }
  248. }
  249. }
  250. return
  251. }
  252. type EdbInfoMaxAndMinInfo struct {
  253. MinDate string `description:"最小日期"`
  254. MaxDate string `description:"最大日期"`
  255. MinValue float64 `description:"最小值"`
  256. MaxValue float64 `description:"最大值"`
  257. LatestValue float64 `description:"最新值"`
  258. }
  259. func GetEdbInfoMaxAndMinInfo(source, subSource int, edbCode string) (item *EdbInfoMaxAndMinInfo, err error) {
  260. sql := ``
  261. tableName := GetEdbDataTableName(source, subSource)
  262. sql = ` SELECT MIN(data_time) AS min_date,MAX(data_time) AS max_date,MIN(value) AS min_value,MAX(value) AS max_value FROM %s WHERE edb_code=? `
  263. sql = fmt.Sprintf(sql, tableName)
  264. err = global.MYSQL["data"].Raw(sql, edbCode).Scan(&item).Error
  265. var latest_value float64
  266. sql = ` SELECT value AS latest_value FROM %s WHERE edb_code=? ORDER BY data_time DESC LIMIT 1 `
  267. sql = fmt.Sprintf(sql, tableName)
  268. err = global.MYSQL["data"].Raw(sql, edbCode).Scan(&latest_value).Error
  269. item.LatestValue = latest_value
  270. return
  271. }