predict_edb_info.go 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428
  1. package chart
  2. import (
  3. "encoding/json"
  4. "errors"
  5. "github.com/shopspring/decimal"
  6. edbDataModel "hongze/hongze_yb/models/tables/edb_data"
  7. edbInfoModel "hongze/hongze_yb/models/tables/edb_info"
  8. predictEdbConfModel "hongze/hongze_yb/models/tables/predict_edb_conf"
  9. predictEdbRuleDataModel "hongze/hongze_yb/models/tables/predict_edb_rule_data"
  10. "hongze/hongze_yb/utils"
  11. "strconv"
  12. "time"
  13. )
  14. // GetChartPredictEdbInfoDataList 获取图表的预测指标的未来数据
  15. func GetChartPredictEdbInfoDataList(predictEdbConf predictEdbConfModel.PredictEdbConf, filtrateStartDateStr, latestDateStr string, lastDataValue float64, endDateStr, frequency string) (predictEdbInfoData []*edbDataModel.EdbDataList, err error) {
  16. endDate, err := time.ParseInLocation(utils.FormatDate, endDateStr, time.Local)
  17. if err != nil {
  18. return
  19. }
  20. latestDate, err := time.ParseInLocation(utils.FormatDate, latestDateStr, time.Local)
  21. if err != nil {
  22. return
  23. }
  24. // 开始预测数据的时间
  25. startDate := latestDate
  26. // 如果有筛选时间的话
  27. if filtrateStartDateStr != `` {
  28. filtrateStartDate, tmpErr := time.ParseInLocation(utils.FormatDate, filtrateStartDateStr, time.Local)
  29. if tmpErr != nil {
  30. err = tmpErr
  31. return
  32. }
  33. //如果筛选时间晚于实际数据时间,那么就以筛选时间作为获取预测数据的时间
  34. if filtrateStartDate.After(latestDate) {
  35. startDate = filtrateStartDate.AddDate(0, 0, -1)
  36. }
  37. }
  38. dataValue := lastDataValue
  39. if predictEdbConf.RuleType == 2 {
  40. dataValue = predictEdbConf.FixedValue
  41. }
  42. //获取后面的预测数据
  43. dayList := getPredictEdbDayList(startDate, endDate, frequency)
  44. predictEdbInfoData = make([]*edbDataModel.EdbDataList, 0)
  45. for k, v := range dayList {
  46. predictEdbInfoData = append(predictEdbInfoData, &edbDataModel.EdbDataList{
  47. EdbDataId: int(predictEdbConf.PredictEdbInfoID) + 10000000000 + k,
  48. EdbInfoId: int(predictEdbConf.PredictEdbInfoID),
  49. DataTime: v.Format(utils.FormatDate),
  50. Value: dataValue,
  51. DataTimestamp: (v.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  52. })
  53. }
  54. return
  55. }
  56. // GetChartPredictEdbInfoDataListByConfList 获取图表的预测指标的未来数据
  57. func GetChartPredictEdbInfoDataListByConfList(predictEdbConfList []*predictEdbConfModel.PredictEdbConf, filtrateStartDateStr, latestDateStr, endDateStr, frequency string, realPredictEdbInfoData []*edbDataModel.EdbDataList) (predictEdbInfoData []*edbDataModel.EdbDataList, minValue, maxValue float64, err error) {
  58. endDate, err := time.ParseInLocation(utils.FormatDate, endDateStr, time.Local)
  59. if err != nil {
  60. return
  61. }
  62. latestDate, err := time.ParseInLocation(utils.FormatDate, latestDateStr, time.Local)
  63. if err != nil {
  64. return
  65. }
  66. // 开始预测数据的时间
  67. startDate := latestDate
  68. // 如果有筛选时间的话
  69. if filtrateStartDateStr != `` {
  70. filtrateStartDate, tmpErr := time.ParseInLocation(utils.FormatDate, filtrateStartDateStr, time.Local)
  71. if tmpErr != nil {
  72. err = tmpErr
  73. return
  74. }
  75. //如果筛选时间晚于实际数据时间,那么就以筛选时间作为获取预测数据的时间
  76. if filtrateStartDate.After(latestDate) {
  77. startDate = filtrateStartDate.AddDate(0, 0, -1)
  78. }
  79. }
  80. //var dateArr []string
  81. // 对应日期的值
  82. existMap := make(map[string]float64)
  83. for _, v := range realPredictEdbInfoData {
  84. //dateArr = append(dateArr, v.DataTime)
  85. existMap[v.DataTime] = v.Value
  86. }
  87. predictEdbInfoData = make([]*edbDataModel.EdbDataList, 0)
  88. //dataValue := lastDataValue
  89. //预测规则,1:最新,2:固定值,3:同比,4:同差,5:环比,6:环差,7:N期移动均值,8:N期段线性外推值
  90. for _, predictEdbConf := range predictEdbConfList {
  91. dataEndTime := endDate
  92. if predictEdbConf.EndDate.Before(dataEndTime) {
  93. dataEndTime = predictEdbConf.EndDate
  94. }
  95. var tmpMinValue, tmpMaxValue float64 // 当前预测结果中的最大/最小值
  96. dayList := getPredictEdbDayList(startDate, dataEndTime, frequency)
  97. if len(dayList) <= 0 { // 如果未来没有日期的话,那么就退出当前循环,进入下一个循环
  98. continue
  99. }
  100. switch predictEdbConf.RuleType {
  101. case 1: //1:最新
  102. var lastDataValue float64 //最新值
  103. tmpAllData := make([]*edbDataModel.EdbDataList, 0)
  104. tmpAllData = append(tmpAllData, realPredictEdbInfoData...)
  105. tmpAllData = append(tmpAllData, predictEdbInfoData...)
  106. lenTmpAllData := len(tmpAllData)
  107. if lenTmpAllData > 0 {
  108. lastDataValue = tmpAllData[lenTmpAllData-1].Value
  109. }
  110. predictEdbInfoData = GetChartPredictEdbInfoDataListByRule1(int(predictEdbConf.PredictEdbInfoID), lastDataValue, startDate, dataEndTime, frequency, predictEdbInfoData, existMap)
  111. tmpMaxValue = lastDataValue
  112. tmpMinValue = lastDataValue
  113. case 2: //2:固定值
  114. tmpValDecimal, tmpErr := decimal.NewFromString(predictEdbConf.Value)
  115. if tmpErr != nil {
  116. err = tmpErr
  117. return
  118. }
  119. dataValue, _ := tmpValDecimal.Float64()
  120. predictEdbInfoData = GetChartPredictEdbInfoDataListByRule1(int(predictEdbConf.PredictEdbInfoID), dataValue, startDate, dataEndTime, frequency, predictEdbInfoData, existMap)
  121. tmpMaxValue = dataValue
  122. tmpMinValue = dataValue
  123. case 3: //3:同比
  124. tmpValDecimal, tmpErr := decimal.NewFromString(predictEdbConf.Value)
  125. if tmpErr != nil {
  126. err = tmpErr
  127. return
  128. }
  129. tbValue, _ := tmpValDecimal.Float64()
  130. predictEdbInfoData, tmpMinValue, tmpMaxValue = GetChartPredictEdbInfoDataListByRuleTb(int(predictEdbConf.PredictEdbInfoID), tbValue, startDate, dataEndTime, frequency, realPredictEdbInfoData, predictEdbInfoData, existMap)
  131. case 4: //4:同差
  132. tmpValDecimal, tmpErr := decimal.NewFromString(predictEdbConf.Value)
  133. if tmpErr != nil {
  134. err = tmpErr
  135. return
  136. }
  137. tcValue, _ := tmpValDecimal.Float64()
  138. predictEdbInfoData, tmpMinValue, tmpMaxValue = GetChartPredictEdbInfoDataListByRuleTc(int(predictEdbConf.PredictEdbInfoID), tcValue, startDate, dataEndTime, frequency, realPredictEdbInfoData, predictEdbInfoData, existMap)
  139. case 5: //5:环比
  140. tmpValDecimal, tmpErr := decimal.NewFromString(predictEdbConf.Value)
  141. if tmpErr != nil {
  142. err = tmpErr
  143. return
  144. }
  145. hbValue, _ := tmpValDecimal.Float64()
  146. predictEdbInfoData, tmpMinValue, tmpMaxValue = GetChartPredictEdbInfoDataListByRuleHb(int(predictEdbConf.PredictEdbInfoID), hbValue, startDate, dataEndTime, frequency, realPredictEdbInfoData, predictEdbInfoData, existMap)
  147. case 6: //6:环差
  148. tmpValDecimal, tmpErr := decimal.NewFromString(predictEdbConf.Value)
  149. if tmpErr != nil {
  150. err = tmpErr
  151. return
  152. }
  153. hcValue, _ := tmpValDecimal.Float64()
  154. predictEdbInfoData, tmpMinValue, tmpMaxValue = GetChartPredictEdbInfoDataListByRuleHc(int(predictEdbConf.PredictEdbInfoID), hcValue, startDate, dataEndTime, frequency, realPredictEdbInfoData, predictEdbInfoData, existMap)
  155. case 7: //7:N期移动均值
  156. nValue, tmpErr := strconv.Atoi(predictEdbConf.Value)
  157. if tmpErr != nil {
  158. err = tmpErr
  159. return
  160. }
  161. predictEdbInfoData, tmpMinValue, tmpMaxValue = GetChartPredictEdbInfoDataListByRuleNMoveMeanValue(int(predictEdbConf.PredictEdbInfoID), nValue, startDate, dataEndTime, frequency, realPredictEdbInfoData, predictEdbInfoData, existMap)
  162. case 8: //8:N期段线性外推值
  163. nValue, tmpErr := strconv.Atoi(predictEdbConf.Value)
  164. if tmpErr != nil {
  165. err = tmpErr
  166. return
  167. }
  168. predictEdbInfoData, tmpMinValue, tmpMaxValue, err = GetChartPredictEdbInfoDataListByRuleNLinearRegression(int(predictEdbConf.PredictEdbInfoID), nValue, startDate, dataEndTime, frequency, realPredictEdbInfoData, predictEdbInfoData, existMap)
  169. if err != nil {
  170. return
  171. }
  172. case 9: //9:动态环差”预测规则;
  173. predictEdbInfoData, tmpMinValue, tmpMaxValue = GetChartPredictEdbInfoDataListByRuleTrendsHC(int(predictEdbConf.PredictEdbInfoID), int(predictEdbConf.ConfigID), startDate, dataEndTime, frequency, realPredictEdbInfoData, predictEdbInfoData, existMap)
  174. case 10: //10:根据 给定终值后插值 规则获取预测数据
  175. tmpValDecimal, tmpErr := decimal.NewFromString(predictEdbConf.Value)
  176. if tmpErr != nil {
  177. err = tmpErr
  178. return
  179. }
  180. finalValue, _ := tmpValDecimal.Float64()
  181. predictEdbInfoData, tmpMinValue, tmpMaxValue = GetChartPredictEdbInfoDataListByRuleFinalValueHc(int(predictEdbConf.PredictEdbInfoID), finalValue, startDate, dataEndTime, frequency, realPredictEdbInfoData, predictEdbInfoData, existMap)
  182. case 11: //11:根据 季节性 规则获取预测数据
  183. var seasonConf SeasonConf
  184. tmpErr := json.Unmarshal([]byte(predictEdbConf.Value), &seasonConf)
  185. if tmpErr != nil {
  186. err = errors.New("季节性配置信息异常:" + tmpErr.Error())
  187. return
  188. }
  189. calendar := "公历"
  190. if seasonConf.Calendar == "农历" {
  191. calendar = "农历"
  192. }
  193. yearList := make([]int, 0)
  194. //选择方式,1:连续N年;2:指定年份
  195. if seasonConf.YearType == 1 {
  196. if seasonConf.NValue < 1 {
  197. err = errors.New("连续N年不允许小于1")
  198. return
  199. }
  200. currYear := time.Now().Year()
  201. for i := 0; i < seasonConf.NValue; i++ {
  202. yearList = append(yearList, currYear-i-1)
  203. }
  204. } else {
  205. yearList = seasonConf.YearList
  206. }
  207. predictEdbInfoData, tmpMinValue, tmpMaxValue, err = GetChartPredictEdbInfoDataListByRuleSeason(int(predictEdbConf.PredictEdbInfoID), yearList, calendar, startDate, dataEndTime, frequency, realPredictEdbInfoData, predictEdbInfoData, existMap)
  208. if err != nil {
  209. return
  210. }
  211. case 12: //12:根据 移动平均同比 规则获取预测数据
  212. var moveAverageConf MoveAverageConf
  213. tmpErr := json.Unmarshal([]byte(predictEdbConf.Value), &moveAverageConf)
  214. if tmpErr != nil {
  215. err = errors.New("季节性配置信息异常:" + tmpErr.Error())
  216. return
  217. }
  218. predictEdbInfoData, tmpMinValue, tmpMaxValue, err = GetChartPredictEdbInfoDataListByRuleMoveAverageTb(int(predictEdbConf.PredictEdbInfoID), moveAverageConf.NValue, moveAverageConf.Year, startDate, dataEndTime, frequency, realPredictEdbInfoData, predictEdbInfoData, existMap)
  219. if err != nil {
  220. return
  221. }
  222. case 13: //13:根据 同比增速差值 规则获取预测数据
  223. tmpValDecimal, tmpErr := decimal.NewFromString(predictEdbConf.Value)
  224. if tmpErr != nil {
  225. err = tmpErr
  226. return
  227. }
  228. tbEndValue, _ := tmpValDecimal.Float64()
  229. predictEdbInfoData, tmpMinValue, tmpMaxValue = GetChartPredictEdbInfoDataListByRuleTbzscz(int(predictEdbConf.PredictEdbInfoID), tbEndValue, dayList, frequency, realPredictEdbInfoData, predictEdbInfoData, existMap)
  230. case 14: //14:根据 一元线性拟合 规则获取预测数据
  231. var ruleConf RuleLineNhConf
  232. err = json.Unmarshal([]byte(predictEdbConf.Value), &ruleConf)
  233. if err != nil {
  234. err = errors.New("一元线性拟合配置信息异常:" + err.Error())
  235. return
  236. }
  237. // 规则计算的拟合残差值map
  238. newNhccDataMap := make(map[string]float64)
  239. if predictEdbConf.PredictEdbInfoID > 0 { //已经生成的动态数据
  240. tmpPredictEdbRuleDataList, tmpErr := predictEdbRuleDataModel.GetPredictEdbRuleDataList(int(predictEdbConf.PredictEdbInfoID), int(predictEdbConf.ConfigID), "", "")
  241. if tmpErr != nil {
  242. err = tmpErr
  243. return
  244. }
  245. for _, v := range tmpPredictEdbRuleDataList {
  246. newNhccDataMap[v.DataTime.Format(utils.FormatDate)] = v.Value
  247. }
  248. } else { //未生成的动态数据,需要使用外部传入的数据进行计算
  249. newNhccDataMap, err = getCalculateNhccData(append(realPredictEdbInfoData, predictEdbInfoData...), ruleConf)
  250. if err != nil {
  251. return
  252. }
  253. }
  254. predictEdbInfoData, tmpMinValue, tmpMaxValue, err = GetChartPredictEdbInfoDataListByRuleLineNh(int(predictEdbConf.PredictEdbInfoID), dayList, realPredictEdbInfoData, predictEdbInfoData, newNhccDataMap, existMap)
  255. if err != nil {
  256. return
  257. }
  258. }
  259. //startDate = dataEndTime.AddDate(0, 0, 1)
  260. if startDate.Before(dataEndTime) {
  261. startDate = dataEndTime
  262. }
  263. if tmpMinValue < minValue {
  264. minValue = tmpMinValue
  265. }
  266. if tmpMaxValue < maxValue {
  267. maxValue = tmpMaxValue
  268. }
  269. }
  270. return
  271. }
  272. // GetPredictEdbDayList 获取预测指标日期列表
  273. func getPredictEdbDayList(startDate, endDate time.Time, frequency string) (dayList []time.Time) {
  274. //if !utils.InArrayByStr([]string{"日度", "周度", "月度"}, frequency)
  275. switch frequency {
  276. case "日度":
  277. for currDate := startDate.AddDate(0, 0, 1); currDate.Before(endDate) || currDate.Equal(endDate); currDate = currDate.AddDate(0, 0, 1) {
  278. //周六、日排除
  279. if currDate.Weekday() == time.Sunday || currDate.Weekday() == time.Saturday {
  280. continue
  281. }
  282. dayList = append(dayList, currDate)
  283. }
  284. case "周度":
  285. //nextDate := startDate.AddDate(0, 0, 7)
  286. for currDate := startDate.AddDate(0, 0, 7); currDate.Before(endDate) || currDate.Equal(endDate); currDate = currDate.AddDate(0, 0, 7) {
  287. dayList = append(dayList, currDate)
  288. }
  289. case "月度":
  290. for currDate := startDate; currDate.Before(endDate) || currDate.Equal(endDate); {
  291. currDate = time.Date(currDate.Year(), currDate.Month(), 1, 0, 0, 0, 0, time.Now().Location()).AddDate(0, 1, -1)
  292. if !currDate.After(endDate) && !currDate.Equal(startDate) {
  293. dayList = append(dayList, currDate)
  294. }
  295. currDate = currDate.AddDate(0, 0, 1)
  296. }
  297. case "年度":
  298. for currDate := startDate; currDate.Before(endDate) || currDate.Equal(endDate); {
  299. currDate = time.Date(currDate.Year()+1, 12, 31, 0, 0, 0, 0, time.Now().Location())
  300. if !currDate.After(endDate) && !currDate.Equal(startDate) {
  301. dayList = append(dayList, currDate)
  302. }
  303. }
  304. }
  305. return
  306. }
  307. // GetPredictDataListByPredictEdbInfoId 根据预测指标id获取预测指标的数据
  308. func GetPredictDataListByPredictEdbInfoId(edbInfoId int, startDate, endDate string, isTimeBetween bool) (edbInfo *edbInfoModel.EdbInfo, dataList []*edbDataModel.EdbDataList, sourceEdbInfoItem *edbInfoModel.EdbInfo, predictEdbConf *predictEdbConfModel.PredictEdbConf, err error, errMsg string) {
  309. edbInfo, err = edbInfoModel.GetEdbInfoById(edbInfoId)
  310. if err != nil {
  311. errMsg = `获取预测指标信息失败`
  312. return
  313. }
  314. dataList, sourceEdbInfoItem, predictEdbConf, err, errMsg = GetPredictDataListByPredictEdbInfo(edbInfo, startDate, endDate, isTimeBetween)
  315. return
  316. }
  317. // GetPredictDataListByPredictEdbInfo 根据预测指标信息获取预测指标的数据
  318. func GetPredictDataListByPredictEdbInfo(edbInfo *edbInfoModel.EdbInfo, startDate, endDate string, isTimeBetween bool) (dataList []*edbDataModel.EdbDataList, sourceEdbInfoItem *edbInfoModel.EdbInfo, predictEdbConf *predictEdbConfModel.PredictEdbConf, err error, errMsg string) {
  319. // 非计算指标,直接从表里获取数据
  320. if edbInfo.EdbType != 1 {
  321. if !isTimeBetween {
  322. endDate = ``
  323. }
  324. return GetPredictCalculateDataListByPredictEdbInfo(edbInfo, startDate, endDate)
  325. }
  326. // 查找该预测指标配置
  327. predictEdbConfList, err := predictEdbConfModel.GetPredictEdbConfListById(edbInfo.EdbInfoId)
  328. if err != nil {
  329. errMsg = "获取预测指标配置信息失败"
  330. return
  331. }
  332. if len(predictEdbConfList) == 0 {
  333. errMsg = "获取预测指标配置信息失败"
  334. err = errors.New(errMsg)
  335. return
  336. }
  337. predictEdbConf = predictEdbConfList[0]
  338. // 来源指标
  339. sourceEdbInfoItem, err = edbInfoModel.GetEdbInfoById(int(predictEdbConf.SourceEdbInfoID))
  340. if err != nil {
  341. if err == utils.ErrNoRow {
  342. errMsg = "找不到来源指标信息"
  343. err = errors.New(errMsg)
  344. }
  345. return
  346. }
  347. allDataList := make([]*edbDataModel.EdbDataList, 0)
  348. //获取指标数据(实际已生成)
  349. dataList, err = edbDataModel.GetEdbDataList(sourceEdbInfoItem.Source, sourceEdbInfoItem.EdbInfoId, startDate, endDate)
  350. if err != nil {
  351. return
  352. }
  353. // 如果选择了日期,那么需要筛选所有的数据,用于未来指标的生成
  354. if startDate != `` {
  355. allDataList, err = edbDataModel.GetEdbDataList(sourceEdbInfoItem.Source, sourceEdbInfoItem.EdbInfoId, "", "")
  356. if err != nil {
  357. return
  358. }
  359. } else {
  360. allDataList = dataList
  361. }
  362. // 获取预测指标未来的数据
  363. predictDataList := make([]*edbDataModel.EdbDataList, 0)
  364. endDateStr := edbInfo.EndDate.Format(utils.FormatDate) //预测指标的结束日期
  365. if isTimeBetween { //如果是时间区间,那么
  366. reqEndDateTime, _ := time.ParseInLocation(utils.FormatDate, endDate, time.Local)
  367. // 如果选择的时间区间结束日期 晚于 当天,那么预测数据截止到当天
  368. if reqEndDateTime.Before(edbInfo.EndDate) {
  369. endDateStr = endDate
  370. }
  371. }
  372. //predictDataList, err = GetChartPredictEdbInfoDataList(*predictEdbConf, startDate, sourceEdbInfoItem.LatestDate.Format(utils.FormatDate), sourceEdbInfoItem.LatestValue, endDateStr, edbInfo.Frequency)
  373. var predictMinValue, predictMaxValue float64
  374. predictDataList, predictMinValue, predictMaxValue, err = GetChartPredictEdbInfoDataListByConfList(predictEdbConfList, startDate, sourceEdbInfoItem.LatestDate.Format(utils.FormatDate), endDateStr, edbInfo.Frequency, allDataList)
  375. if err != nil {
  376. return
  377. }
  378. dataList = append(dataList, predictDataList...)
  379. if len(predictDataList) > 0 {
  380. // 如果最小值 大于 预测值,那么将预测值作为最小值数据返回
  381. if edbInfo.MinValue > predictMinValue {
  382. edbInfo.MinValue = predictMinValue
  383. }
  384. // 如果最大值 小于 预测值,那么将预测值作为最大值数据返回
  385. if edbInfo.MaxValue < predictMaxValue {
  386. edbInfo.MaxValue = predictMaxValue
  387. }
  388. }
  389. return
  390. }
  391. // GetPredictCalculateDataListByPredictEdbInfo 根据预测运算指标信息获取预测指标的数据
  392. func GetPredictCalculateDataListByPredictEdbInfo(edbInfo *edbInfoModel.EdbInfo, startDate, endDate string) (dataList []*edbDataModel.EdbDataList, sourceEdbInfoItem *edbInfoModel.EdbInfo, predictEdbConf *predictEdbConfModel.PredictEdbConf, err error, errMsg string) {
  393. dataList, err = edbDataModel.GetEdbDataList(edbInfo.Source, edbInfo.EdbInfoId, startDate, endDate)
  394. return
  395. }