predict_edb_info_rule.go 55 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492
  1. package data
  2. import (
  3. "errors"
  4. "fmt"
  5. "github.com/nosixtools/solarlunar"
  6. "github.com/shopspring/decimal"
  7. "hongze/hongze_ETA_mobile_api/models/data_manage"
  8. "hongze/hongze_ETA_mobile_api/utils"
  9. "math"
  10. "strings"
  11. "time"
  12. )
  13. // GetChartPredictEdbInfoDataListByRule1 根据规则1获取预测数据
  14. func GetChartPredictEdbInfoDataListByRule1(edbInfoId int, dataValue float64, dayList []time.Time, predictEdbInfoData []*data_manage.EdbDataList, existMap map[string]float64) (newPredictEdbInfoData []*data_manage.EdbDataList) {
  15. newPredictEdbInfoData = predictEdbInfoData
  16. //获取后面的预测数据
  17. predictEdbInfoData = make([]*data_manage.EdbDataList, 0)
  18. for k, v := range dayList {
  19. newPredictEdbInfoData = append(newPredictEdbInfoData, &data_manage.EdbDataList{
  20. EdbDataId: edbInfoId + 100000 + k,
  21. EdbInfoId: edbInfoId,
  22. DataTime: v.Format(utils.FormatDate),
  23. Value: dataValue,
  24. DataTimestamp: (v.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  25. })
  26. existMap[v.Format(utils.FormatDate)] = dataValue
  27. }
  28. return
  29. }
  30. // GetChartPredictEdbInfoDataListByRuleTb 根据同比值规则获取预测数据
  31. // 2.1 同比: 在未来某一个时间段内,给定一个固定的同比增速a,用去年同期值X乘以同比增速(1+a),得到预测值Y=X(1+a)
  32. // 例: 今年1-3月值,100,100,120。给定同比增速a=0.1,则明年1-3月预测值为: 100*1.1=110,100*1.1=110,120*1.1=132。
  33. func GetChartPredictEdbInfoDataListByRuleTb(edbInfoId int, tbValue float64, dayList []time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*data_manage.EdbDataList, existMap map[string]float64) (newPredictEdbInfoData []*data_manage.EdbDataList, minValue, maxValue float64) {
  34. allDataList := make([]*data_manage.EdbDataList, 0)
  35. allDataList = append(allDataList, realPredictEdbInfoData...)
  36. allDataList = append(allDataList, predictEdbInfoData...)
  37. newPredictEdbInfoData = predictEdbInfoData
  38. index := len(allDataList)
  39. //获取后面的预测数据
  40. predictEdbInfoData = make([]*data_manage.EdbDataList, 0)
  41. for k, currentDate := range dayList {
  42. tmpData := &data_manage.EdbDataList{
  43. EdbDataId: edbInfoId + 100000 + index + k,
  44. EdbInfoId: edbInfoId,
  45. DataTime: currentDate.Format(utils.FormatDate),
  46. //Value: dataValue,
  47. DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  48. }
  49. var val float64
  50. var calculateStatus bool //计算结果
  51. //currentItem := existMap[av]
  52. //上一年的日期
  53. preDate := currentDate.AddDate(-1, 0, 0)
  54. preDateStr := preDate.Format(utils.FormatDate)
  55. if preValue, ok := existMap[preDateStr]; ok { //上一年同期找到
  56. val = TbzDivMul(preValue, tbValue)
  57. calculateStatus = true
  58. } else {
  59. switch frequency {
  60. case "月度":
  61. //向上和向下,各找一个月
  62. nextDateDay := preDate
  63. preDateDay := preDate
  64. for i := 0; i <= 35; i++ {
  65. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  66. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  67. val = TbzDivMul(preValue, tbValue)
  68. calculateStatus = true
  69. break
  70. } else {
  71. preDateDayStr := preDateDay.Format(utils.FormatDate)
  72. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  73. val = TbzDivMul(preValue, tbValue)
  74. calculateStatus = true
  75. break
  76. }
  77. }
  78. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  79. preDateDay = preDateDay.AddDate(0, 0, -1)
  80. }
  81. case "季度", "年度":
  82. if preValue, ok := existMap[preDateStr]; ok { //上一年同期->下一个月找到
  83. val = TbzDivMul(preValue, tbValue)
  84. calculateStatus = true
  85. break
  86. }
  87. default:
  88. nextDateDay := preDate
  89. preDateDay := preDate
  90. for i := 0; i < 35; i++ {
  91. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  92. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  93. val = TbzDivMul(preValue, tbValue)
  94. calculateStatus = true
  95. break
  96. } else {
  97. preDateDayStr := preDateDay.Format(utils.FormatDate)
  98. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  99. val = TbzDivMul(preValue, tbValue)
  100. calculateStatus = true
  101. break
  102. } else {
  103. //fmt.Println("pre not find:", preDateStr, "i:", i)
  104. }
  105. }
  106. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  107. preDateDay = preDateDay.AddDate(0, 0, -1)
  108. }
  109. }
  110. }
  111. if calculateStatus {
  112. tmpData.Value = val
  113. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  114. allDataList = append(allDataList, tmpData)
  115. existMap[tmpData.DataTime] = val
  116. // 最大最小值
  117. if val < minValue {
  118. minValue = val
  119. }
  120. if val > maxValue {
  121. maxValue = val
  122. }
  123. }
  124. }
  125. return
  126. }
  127. // TbzDivMul 同比值计算
  128. // @params a float64 去年同期值
  129. // @params b float64 固定同比增速
  130. func TbzDivMul(a, b float64) (result float64) {
  131. if b != 0 {
  132. // 去年同期值
  133. af := decimal.NewFromFloat(a)
  134. // 同比增速
  135. bf := decimal.NewFromFloat(b)
  136. // 默认1
  137. cf := decimal.NewFromFloat(1)
  138. // 总增速
  139. val := bf.Add(cf)
  140. // 计算
  141. result, _ = val.Mul(af).RoundCeil(4).Float64()
  142. } else {
  143. result = 0
  144. }
  145. return
  146. }
  147. // GetChartPredictEdbInfoDataListByRuleTc 根据同差值规则获取预测数据
  148. // 2.2 同差: 在未来某一个时间段内,给定一个固定的同比增加值a,用去年同期值X加上同比增加值A,得到预测值Y=X+a
  149. // 例: 今年1-3月值,100,100,120。给定同比增加值a=10,则明年1-3月预测值为: 100+10=110,100+10=110,120+10=130
  150. func GetChartPredictEdbInfoDataListByRuleTc(edbInfoId int, tcValue float64, dayList []time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*data_manage.EdbDataList, existMap map[string]float64) (newPredictEdbInfoData []*data_manage.EdbDataList, minValue, maxValue float64) {
  151. allDataList := make([]*data_manage.EdbDataList, 0)
  152. allDataList = append(allDataList, realPredictEdbInfoData...)
  153. allDataList = append(allDataList, predictEdbInfoData...)
  154. newPredictEdbInfoData = predictEdbInfoData
  155. index := len(allDataList)
  156. //获取后面的预测数据
  157. predictEdbInfoData = make([]*data_manage.EdbDataList, 0)
  158. for k, currentDate := range dayList {
  159. tmpData := &data_manage.EdbDataList{
  160. EdbDataId: edbInfoId + 100000 + index + k,
  161. EdbInfoId: edbInfoId,
  162. DataTime: currentDate.Format(utils.FormatDate),
  163. //Value: dataValue,
  164. DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  165. }
  166. var val float64
  167. var calculateStatus bool //计算结果
  168. //currentItem := existMap[av]
  169. //上一年的日期
  170. preDate := currentDate.AddDate(-1, 0, 0)
  171. preDateStr := preDate.Format(utils.FormatDate)
  172. if preValue, ok := existMap[preDateStr]; ok { //上一年同期找到
  173. val = TczDiv(preValue, tcValue)
  174. calculateStatus = true
  175. } else {
  176. switch frequency {
  177. case "月度":
  178. //向上和向下,各找一个月
  179. nextDateDay := preDate
  180. preDateDay := preDate
  181. for i := 0; i <= 35; i++ {
  182. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  183. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  184. val = TczDiv(preValue, tcValue)
  185. calculateStatus = true
  186. break
  187. } else {
  188. preDateDayStr := preDateDay.Format(utils.FormatDate)
  189. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  190. val = TczDiv(preValue, tcValue)
  191. calculateStatus = true
  192. break
  193. }
  194. }
  195. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  196. preDateDay = preDateDay.AddDate(0, 0, -1)
  197. }
  198. case "季度", "年度":
  199. if preValue, ok := existMap[preDateStr]; ok { //上一年同期->下一个月找到
  200. val = TczDiv(preValue, tcValue)
  201. calculateStatus = true
  202. break
  203. }
  204. default:
  205. nextDateDay := preDate
  206. preDateDay := preDate
  207. for i := 0; i < 35; i++ {
  208. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  209. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  210. val = TczDiv(preValue, tcValue)
  211. calculateStatus = true
  212. break
  213. } else {
  214. preDateDayStr := preDateDay.Format(utils.FormatDate)
  215. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  216. val = TczDiv(preValue, tcValue)
  217. calculateStatus = true
  218. break
  219. } else {
  220. //fmt.Println("pre not find:", preDateStr, "i:", i)
  221. }
  222. }
  223. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  224. preDateDay = preDateDay.AddDate(0, 0, -1)
  225. }
  226. }
  227. }
  228. if calculateStatus {
  229. tmpData.Value = val
  230. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  231. allDataList = append(allDataList, tmpData)
  232. existMap[tmpData.DataTime] = val
  233. // 最大最小值
  234. if val < minValue {
  235. minValue = val
  236. }
  237. if val > maxValue {
  238. maxValue = val
  239. }
  240. }
  241. }
  242. return
  243. }
  244. // TczDiv 环差值计算
  245. // @params a float64 上一期值
  246. // @params b float64 固定的环比增加值
  247. func TczDiv(a, b float64) (result float64) {
  248. if b != 0 {
  249. // 上一期值
  250. af := decimal.NewFromFloat(a)
  251. // 固定的环比增加值
  252. bf := decimal.NewFromFloat(b)
  253. // 计算
  254. result, _ = af.Add(bf).RoundCeil(4).Float64()
  255. } else {
  256. result = 0
  257. }
  258. return
  259. }
  260. // GetChartPredictEdbInfoDataListByRuleHb 根据环比值规则获取预测数据
  261. // 环比:在未来某一个时间段内,给定一个固定的环比增速a,用上一期值X乘以环比增速(1+a),得到预测值Y=X(1+a)
  262. // 例: 最近1期值为100,给定环比增速a=0.2,则未来3期预测值为: 100*1.2=120,120*1.2=144,144*1.2=172.8
  263. func GetChartPredictEdbInfoDataListByRuleHb(edbInfoId int, hbValue float64, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*data_manage.EdbDataList, existMap map[string]float64) (newPredictEdbInfoData []*data_manage.EdbDataList, minValue, maxValue float64) {
  264. allDataList := make([]*data_manage.EdbDataList, 0)
  265. allDataList = append(allDataList, realPredictEdbInfoData...)
  266. allDataList = append(allDataList, predictEdbInfoData...)
  267. newPredictEdbInfoData = predictEdbInfoData
  268. index := len(allDataList)
  269. //获取后面的预测数据
  270. for k, currentDate := range dayList {
  271. tmpK := index + k - 1 //上1期的值
  272. // 环比值计算
  273. val := HbzDiv(allDataList[tmpK].Value, hbValue)
  274. currentDateStr := currentDate.Format(utils.FormatDate)
  275. tmpData := &data_manage.EdbDataList{
  276. EdbDataId: edbInfoId + 100000 + index + k,
  277. EdbInfoId: edbInfoId,
  278. DataTime: currentDateStr,
  279. Value: val,
  280. DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  281. }
  282. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  283. allDataList = append(allDataList, tmpData)
  284. existMap[currentDateStr] = val
  285. // 最大最小值
  286. if val < minValue {
  287. minValue = val
  288. }
  289. if val > maxValue {
  290. maxValue = val
  291. }
  292. }
  293. return
  294. }
  295. // HbzDiv 环比值计算
  296. // @params a float64 上一期值
  297. // @params b float64 固定的环比增速
  298. func HbzDiv(a, b float64) (result float64) {
  299. if b != 0 {
  300. // 上一期值
  301. af := decimal.NewFromFloat(a)
  302. // 固定的环比增速
  303. bf := decimal.NewFromFloat(b)
  304. // 默认1
  305. cf := decimal.NewFromFloat(1)
  306. // 总增速
  307. val := bf.Add(cf)
  308. // 计算
  309. result, _ = val.Mul(af).RoundCeil(4).Float64()
  310. } else {
  311. result = 0
  312. }
  313. return
  314. }
  315. // GetChartPredictEdbInfoDataListByRuleHc 根据环差值规则获取预测数据
  316. // 2.4 环差:在未来某一个时间段内,给定一个固定的环比增加值a,用上一期值X加上环比增加值a,得到预测值Y=X+a
  317. // 例: 最近1期值为100,给定环比增加值a=10,则未来3期预测值为: 100+10=110,110+10=120,120+10=130
  318. func GetChartPredictEdbInfoDataListByRuleHc(edbInfoId int, hcValue float64, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*data_manage.EdbDataList, existMap map[string]float64) (newPredictEdbInfoData []*data_manage.EdbDataList, minValue, maxValue float64) {
  319. allDataList := make([]*data_manage.EdbDataList, 0)
  320. allDataList = append(allDataList, realPredictEdbInfoData...)
  321. allDataList = append(allDataList, predictEdbInfoData...)
  322. newPredictEdbInfoData = predictEdbInfoData
  323. index := len(allDataList)
  324. //获取后面的预测数据
  325. for k, currentDate := range dayList {
  326. tmpK := index + k - 1 //上1期的值
  327. // 环差别值计算
  328. val := HczDiv(allDataList[tmpK].Value, hcValue)
  329. currentDateStr := currentDate.Format(utils.FormatDate)
  330. tmpData := &data_manage.EdbDataList{
  331. EdbDataId: edbInfoId + 100000 + index + k,
  332. EdbInfoId: edbInfoId,
  333. DataTime: currentDateStr,
  334. Value: val,
  335. DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  336. }
  337. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  338. allDataList = append(allDataList, tmpData)
  339. existMap[currentDateStr] = val
  340. // 最大最小值
  341. if val < minValue {
  342. minValue = val
  343. }
  344. if val > maxValue {
  345. maxValue = val
  346. }
  347. }
  348. return
  349. }
  350. // HczDiv 环差值计算
  351. // @params a float64 上一期值
  352. // @params b float64 固定的环比增加值
  353. func HczDiv(a, b float64) (result float64) {
  354. if b != 0 {
  355. // 上一期值
  356. af := decimal.NewFromFloat(a)
  357. // 固定的环比增加值
  358. bf := decimal.NewFromFloat(b)
  359. // 计算
  360. result, _ = af.Add(bf).RoundCeil(4).Float64()
  361. } else {
  362. result = 0
  363. }
  364. return
  365. }
  366. // GetChartPredictEdbInfoDataListByRuleNMoveMeanValue 根据N期移动均值规则获取预测数据
  367. // 2.5 N期移动均值:在未来某一个时间段内,下一期值等于过去N期值得平均值。
  368. // 例:最近3期值(N=3),为95,98,105则未来第1期值为 1/3*(95+98+105)=99.33, 未来第2期值为 1/3*(98+105+99.33)=100.78依次类推。
  369. func GetChartPredictEdbInfoDataListByRuleNMoveMeanValue(edbInfoId int, nValue int, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*data_manage.EdbDataList, existMap map[string]float64) (newPredictEdbInfoData []*data_manage.EdbDataList, minValue, maxValue float64) {
  370. allDataList := make([]*data_manage.EdbDataList, 0)
  371. allDataList = append(allDataList, realPredictEdbInfoData...)
  372. allDataList = append(allDataList, predictEdbInfoData...)
  373. newPredictEdbInfoData = predictEdbInfoData
  374. lenAllData := len(allDataList)
  375. if lenAllData < nValue || lenAllData <= 0 {
  376. return
  377. }
  378. if nValue <= 0 {
  379. return
  380. }
  381. // 分母
  382. decimalN := decimal.NewFromInt(int64(nValue))
  383. //获取后面的预测数据
  384. for k, currentDate := range dayList {
  385. tmpIndex := lenAllData + k - 1 //上1期的值
  386. // 数据集合中的最后一个数据
  387. tmpDecimalVal := decimal.NewFromFloat(allDataList[tmpIndex].Value)
  388. for tmpK := 2; tmpK <= nValue; tmpK++ {
  389. tmpIndex2 := tmpIndex - tmpK //上N期的值
  390. tmpDecimalVal2 := decimal.NewFromFloat(allDataList[tmpIndex2].Value)
  391. tmpDecimalVal = tmpDecimalVal.Add(tmpDecimalVal2)
  392. }
  393. // N期移动均值计算
  394. val, _ := tmpDecimalVal.Div(decimalN).RoundCeil(4).Float64()
  395. currentDateStr := currentDate.Format(utils.FormatDate)
  396. tmpData := &data_manage.EdbDataList{
  397. EdbDataId: edbInfoId + 100000 + lenAllData + k,
  398. EdbInfoId: edbInfoId,
  399. DataTime: currentDateStr,
  400. Value: val,
  401. DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  402. }
  403. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  404. allDataList = append(allDataList, tmpData)
  405. existMap[currentDateStr] = val
  406. // 最大最小值
  407. if val < minValue {
  408. minValue = val
  409. }
  410. if val > maxValue {
  411. maxValue = val
  412. }
  413. }
  414. return
  415. }
  416. // GetChartPredictEdbInfoDataListByRuleNLinearRegression 根据N期移动均值规则获取预测数据
  417. // 2.6N期段线性外推值:给出过去N期值所确定的线性回归方程(Y=aX+b)在未来一段时间内的推算值。回归方程虽然比较复杂,但各种编程语言应该都有现成的模块或函数,应该无需自己编写。
  418. // 例1:过去5期值(N=5)分别为:3,5,7,9,11(每两期值之间的时间间隔相等)。那么按照线性回归方程推算,未来三期的预测值是:13,15,17。
  419. //
  420. // 例2:过去6期值(N=6)分别为:3,3,5,7,9,11(每两期值之间的时间间隔相等)。那么按照线性回归方程推算,未来三期的预测值是:12.33,14.05,15.76。例1和例2的区别在于,多加了一期数据,导致回归方程发生改变,从而预测值不同。
  421. func GetChartPredictEdbInfoDataListByRuleNLinearRegression(edbInfoId int, nValue int, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*data_manage.EdbDataList, existMap map[string]float64) (newPredictEdbInfoData []*data_manage.EdbDataList, minValue, maxValue float64, err error) {
  422. allDataList := make([]*data_manage.EdbDataList, 0)
  423. allDataList = append(allDataList, realPredictEdbInfoData...)
  424. allDataList = append(allDataList, predictEdbInfoData...)
  425. newPredictEdbInfoData = predictEdbInfoData
  426. lenAllData := len(allDataList)
  427. if lenAllData < nValue || lenAllData <= 0 {
  428. return
  429. }
  430. if nValue <= 1 {
  431. return
  432. }
  433. //获取后面的预测数据
  434. // 获取线性方程公式的a、b的值
  435. coordinateData := make([]utils.Coordinate, 0)
  436. for tmpK := nValue; tmpK > 0; tmpK-- {
  437. tmpIndex2 := lenAllData - tmpK //上N期的值
  438. tmpCoordinate := utils.Coordinate{
  439. X: float64(nValue - tmpK + 1),
  440. Y: allDataList[tmpIndex2].Value,
  441. }
  442. coordinateData = append(coordinateData, tmpCoordinate)
  443. }
  444. a, b := utils.GetLinearResult(coordinateData)
  445. if math.IsNaN(a) || math.IsNaN(b) {
  446. err = errors.New("线性方程公式生成失败")
  447. return
  448. }
  449. //fmt.Println("a:", a, ";======b:", b)
  450. for k, currentDate := range dayList {
  451. tmpK := nValue + k + 1
  452. aDecimal := decimal.NewFromFloat(a)
  453. xDecimal := decimal.NewFromInt(int64(tmpK))
  454. bDecimal := decimal.NewFromFloat(b)
  455. val, _ := aDecimal.Mul(xDecimal).Add(bDecimal).RoundCeil(4).Float64()
  456. currentDateStr := currentDate.Format(utils.FormatDate)
  457. tmpData := &data_manage.EdbDataList{
  458. EdbDataId: edbInfoId + 100000 + lenAllData + k,
  459. EdbInfoId: edbInfoId,
  460. DataTime: currentDateStr,
  461. Value: val,
  462. DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  463. }
  464. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  465. allDataList = append(allDataList, tmpData)
  466. existMap[currentDateStr] = val
  467. // 最大最小值
  468. if val < minValue {
  469. minValue = val
  470. }
  471. if val > maxValue {
  472. maxValue = val
  473. }
  474. }
  475. return
  476. }
  477. // GetChartPredictEdbInfoDataListByRuleTrendsHC 根据动态环比增加值的计算规则获取预测数据
  478. //
  479. // 研究员有对预测指标进行动态环差计算的需求,即预测指标使用环差规则进行预测时,环比增加值不是固定值,而是由几个预测指标计算得出的动态变化的值;
  480. // 需求说明:
  481. // 1、增加“动态环差”预测规则;
  482. // 2、环比增加值在弹窗设置;
  483. // 3、动态环差预测举例:
  484. // 指标A实际最新数据为2022-10-27(100);
  485. // 预测指标B预测数据为2022-10-28(240)、2022-10-29(300);
  486. // 预测指标C预测数据为2022-10-28(260)、2022-10-29(310);
  487. // 计算公式为B-C;
  488. // 则指标A至2022-10-29的预测值为2022-10-28(100+(240-260)=80)、2022-10-29(80+(300-310)=90);
  489. // 注:动态环比增加值的计算遵从计算指标的计算规则,即用于计算的指标若有部分指标缺少部分日期数据,则这部分日期数据不做计算,为空;若动态环比增加值某一天为空,则往前追溯最近一期有值的环比增加值作为该天的数值参与计算;
  490. func GetChartPredictEdbInfoDataListByRuleTrendsHC(edbInfoId int, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*data_manage.EdbDataList, hcDataMap, existMap map[string]float64) (newPredictEdbInfoData []*data_manage.EdbDataList, minValue, maxValue float64) {
  491. allDataList := make([]*data_manage.EdbDataList, 0)
  492. allDataList = append(allDataList, realPredictEdbInfoData...)
  493. allDataList = append(allDataList, predictEdbInfoData...)
  494. newPredictEdbInfoData = predictEdbInfoData
  495. lenAllData := len(allDataList)
  496. if lenAllData <= 0 {
  497. return
  498. }
  499. for k, currentDate := range dayList {
  500. // 最近一条数据
  501. tmpLenAllDataList := len(allDataList)
  502. lastValue := allDataList[tmpLenAllDataList-1].Value
  503. // 动态环差值数据
  504. currentDateStr := currentDate.Format(utils.FormatDate)
  505. hcVal, ok := hcDataMap[currentDateStr]
  506. if !ok {
  507. continue
  508. }
  509. lastValueDecimal := decimal.NewFromFloat(lastValue)
  510. hcValDecimal := decimal.NewFromFloat(hcVal)
  511. val, _ := lastValueDecimal.Add(hcValDecimal).RoundCeil(4).Float64()
  512. tmpData := &data_manage.EdbDataList{
  513. EdbDataId: edbInfoId + 100000 + lenAllData + k,
  514. EdbInfoId: edbInfoId,
  515. DataTime: currentDateStr,
  516. Value: val,
  517. DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  518. }
  519. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  520. allDataList = append(allDataList, tmpData)
  521. existMap[currentDateStr] = val
  522. // 最大最小值
  523. if val < minValue {
  524. minValue = val
  525. }
  526. if val > maxValue {
  527. maxValue = val
  528. }
  529. }
  530. return
  531. }
  532. // GetChartPredictEdbInfoDataListByRuleFinalValueHc 根据 给定终值后插值 规则获取预测数据
  533. //
  534. // 项目背景:
  535. // 假设螺纹产量在2023年1月1号的预测值是255万吨,从当下到2023年1月1号,螺纹产量将会线性变化,那么每一期的螺纹产量是多少?
  536. // 算法:从当下(2022/10/28)到2023/1/1号,一共65天,从当前值(305.02)到255,差值-50.02,
  537. // 则每日环差为-50.02/65=-0.7695。因为数据点是周度频率,每周环差为,-0.3849*7=-5.3868。
  538. // 从以上计算过程可看出,“给定终值后差值”的算法,是在“环差”算法的基础上,做的一个改动。即这个”环差值”=【(终值-最新值)/终值与最新值得日期差】*数据频率
  539. // 需求说明:
  540. // 1、增加一个预测规则,名为“给定终值后插值”,给定预测截止日期和预测终值,计算最新数据日期至预测截止日期的时间差T,计算最新数据和预测终值的数据差S,数据频率与指标频度有关,日度=1,周度=7,旬度=10,月度=30,季度=90,年度=365,环差值=S/T*频率,预测数值=前一天数值+环差值;
  541. // 2、最新数据值和日期改动后,需重新计算环差值和预测数值;
  542. func GetChartPredictEdbInfoDataListByRuleFinalValueHc(edbInfoId int, finalValue float64, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*data_manage.EdbDataList, existMap map[string]float64) (newPredictEdbInfoData []*data_manage.EdbDataList, minValue, maxValue float64) {
  543. allDataList := make([]*data_manage.EdbDataList, 0)
  544. allDataList = append(allDataList, realPredictEdbInfoData...)
  545. allDataList = append(allDataList, predictEdbInfoData...)
  546. newPredictEdbInfoData = predictEdbInfoData
  547. index := len(allDataList)
  548. //获取后面的预测日期
  549. lenDay := len(dayList)
  550. if lenDay <= 0 {
  551. return
  552. }
  553. var hcValue float64
  554. lastValueDeciamal := decimal.NewFromFloat(allDataList[index-1].Value) // 实际数据的最后一个值
  555. finalValueDeciamal := decimal.NewFromFloat(finalValue) // 给定的终止数据
  556. dayDecimal := decimal.NewFromInt(int64(lenDay)) // 需要作为分母的期数
  557. hcValue, _ = finalValueDeciamal.Sub(lastValueDeciamal).Div(dayDecimal).Float64() // 计算出来的环差值
  558. //获取后面的预测数据
  559. predictEdbInfoData = make([]*data_manage.EdbDataList, 0)
  560. lastK := lenDay - 1 // 最后的日期
  561. for k, currentDate := range dayList {
  562. tmpK := index + k - 1 //上1期的值
  563. var val float64
  564. // 环差别值计算
  565. if k == lastK { //如果是最后一天,那么就用最终值,否则就计算
  566. val = finalValue
  567. } else {
  568. val = HczDiv(allDataList[tmpK].Value, hcValue)
  569. }
  570. currentDateStr := currentDate.Format(utils.FormatDate)
  571. tmpData := &data_manage.EdbDataList{
  572. EdbDataId: edbInfoId + 100000 + index + k,
  573. EdbInfoId: edbInfoId,
  574. DataTime: currentDateStr,
  575. Value: val,
  576. DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  577. }
  578. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  579. allDataList = append(allDataList, tmpData)
  580. existMap[currentDateStr] = val
  581. // 最大最小值
  582. if val < minValue {
  583. minValue = val
  584. }
  585. if val > maxValue {
  586. maxValue = val
  587. }
  588. }
  589. return
  590. }
  591. // SeasonConf 季节性规则的配置
  592. type SeasonConf struct {
  593. Calendar string `description:"公历、农历"`
  594. YearType int `description:"选择方式,1:连续N年;2:指定年份"`
  595. NValue int `description:"连续N年"`
  596. YearList []int `description:"指定年份列表"`
  597. }
  598. // GetChartPredictEdbInfoDataListByRuleSeason 根据 季节性 规则获取预测数据
  599. //
  600. // ETA预测规则:季节性
  601. // 已知选定指标A最近更新日期: 2022-12-6 200
  602. // 设置预测截止日期2023-01-06
  603. // 1、选择过去N年,N=3
  604. // 则过去N年为2021、2020、2019
  605. // 指标A日期 实际值 指标A日期
  606. // 2019/12/5 150 2019/12/6
  607. // 2020/12/5 180 2020/12/6
  608. // 2021/12/5 210 2021/12/6
  609. // 2019/12/31 200 2020/1/1
  610. // 2020/12/31 210 2021/1/1
  611. // 2021/12/31 250 2022/1/1
  612. //
  613. // 计算12.7预测值,求过去N年环差均值=[(100-150)+(160-180)+(250-210)]/3=-10
  614. // 则12.7预测值=12.6值+过去N年环差均值=200-10=190
  615. // 以此类推...
  616. //
  617. // 计算2023.1.2预测值,求过去N年环差均值=[(300-200)+(220-210)+(260-250)]/3=40
  618. // 则2023.1.2预测值=2023.1.1值+过去N年环差均值
  619. func GetChartPredictEdbInfoDataListByRuleSeason(edbInfoId int, yearsList []int, calendar string, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*data_manage.EdbDataList, existMap map[string]float64) (newPredictEdbInfoData []*data_manage.EdbDataList, minValue, maxValue float64, err error) {
  620. allDataList := make([]*data_manage.EdbDataList, 0)
  621. allDataList = append(allDataList, realPredictEdbInfoData...)
  622. allDataList = append(allDataList, predictEdbInfoData...)
  623. newPredictEdbInfoData = predictEdbInfoData
  624. // 插值法数据处理
  625. handleDataMap := make(map[string]float64)
  626. err = handleDataByLinearRegression(allDataList, handleDataMap)
  627. if err != nil {
  628. return
  629. }
  630. // 获取每个年份的日期数据需要平移的天数
  631. moveDayMap := make(map[int]int, 0) // 每个年份的春节公历
  632. {
  633. if calendar == "公历" {
  634. for _, year := range yearsList {
  635. moveDayMap[year] = 0 //公历就不平移了
  636. }
  637. } else {
  638. currentDay := time.Now()
  639. if currentDay.Month() >= 11 { //如果大于等于11月份,那么用的是下一年的春节
  640. currentDay = currentDay.AddDate(1, 0, 0)
  641. }
  642. currentYear := currentDay.Year()
  643. currentYearCjnl := fmt.Sprintf("%d-01-01", currentYear) //当年的春节农历
  644. currentYearCjgl := solarlunar.LunarToSolar(currentYearCjnl, false) //当年的春节公历
  645. currentYearCjglTime, tmpErr := time.ParseInLocation(utils.FormatDate, currentYearCjgl, time.Local)
  646. if tmpErr != nil {
  647. err = errors.New("当前春节公历日期转换失败:" + tmpErr.Error())
  648. return
  649. }
  650. // 指定的年份
  651. for _, year := range yearsList {
  652. tmpYearCjnl := fmt.Sprintf("%d-01-01", year) //指定年的春节农历
  653. tmpYearCjgl := solarlunar.LunarToSolar(tmpYearCjnl, false) //指定年的春节公历
  654. //moveDayList = append(moveDayList, 0) //公历就不平移了
  655. tmpYearCjglTime, tmpErr := time.ParseInLocation(utils.FormatDate, tmpYearCjgl, time.Local)
  656. if tmpErr != nil {
  657. err = errors.New(fmt.Sprintf("%d公历日期转换失败:%s", year, tmpErr.Error()))
  658. return
  659. }
  660. tmpCurrentYearCjglTime := currentYearCjglTime.AddDate(year-currentYear, 0, 0)
  661. moveDay := utils.GetTimeSubDay(tmpYearCjglTime, tmpCurrentYearCjglTime)
  662. moveDayMap[year] = moveDay //公历平移
  663. }
  664. }
  665. }
  666. index := len(allDataList)
  667. //获取后面的预测数据
  668. predictEdbInfoData = make([]*data_manage.EdbDataList, 0)
  669. for k, currentDate := range dayList {
  670. // 如果遇到闰二月,如2.29,去掉该天数据
  671. if strings.Contains(currentDate.Format(utils.FormatDate), "02-29") {
  672. continue
  673. }
  674. tmpHistoryVal := decimal.NewFromFloat(0) //往期的差值总和
  675. tmpHistoryValNum := 0 // 往期差值计算的数量
  676. tmpLenAllDataList := len(allDataList)
  677. tmpK := tmpLenAllDataList - 1 //上1期数据的下标
  678. lastDayData := allDataList[tmpK] // 上1期的数据
  679. lastDayStr := lastDayData.DataTime
  680. lastDayVal := lastDayData.Value
  681. lastDay, tmpErr := time.ParseInLocation(utils.FormatDate, lastDayStr, time.Local)
  682. if tmpErr != nil {
  683. err = errors.New("获取上期日期转换失败:" + tmpErr.Error())
  684. }
  685. for _, year := range yearsList {
  686. moveDay := moveDayMap[year] //需要移动的天数
  687. var tmpHistoryCurrentVal, tmpHistoryLastVal float64
  688. var isFindHistoryCurrent, isFindHistoryLast bool //是否找到前几年的数据
  689. //前几年当日的日期
  690. tmpHistoryCurrentDate := currentDate.AddDate(year-currentDate.Year(), 0, -moveDay)
  691. for i := 0; i <= 35; i++ { // 前后35天找数据,找到最近的值,先向后面找,再往前面找
  692. tmpDate := tmpHistoryCurrentDate.AddDate(0, 0, i)
  693. if val, ok := handleDataMap[tmpDate.Format(utils.FormatDate)]; ok {
  694. tmpHistoryCurrentVal = val
  695. isFindHistoryCurrent = true
  696. break
  697. } else {
  698. tmpDate := tmpHistoryCurrentDate.AddDate(0, 0, -i)
  699. if val, ok := handleDataMap[tmpDate.Format(utils.FormatDate)]; ok {
  700. tmpHistoryCurrentVal = val
  701. isFindHistoryCurrent = true
  702. break
  703. }
  704. }
  705. }
  706. //前几年上一期的日期
  707. tmpHistoryLastDate := lastDay.AddDate(year-lastDay.Year(), 0, -moveDay)
  708. for i := 0; i <= 35; i++ { // 前后35天找数据,找到最近的值,先向后面找,再往前面找
  709. tmpDate := tmpHistoryLastDate.AddDate(0, 0, i)
  710. if val, ok := handleDataMap[tmpDate.Format(utils.FormatDate)]; ok {
  711. tmpHistoryLastVal = val
  712. isFindHistoryLast = true
  713. break
  714. } else {
  715. tmpDate := tmpHistoryLastDate.AddDate(0, 0, -i)
  716. if val, ok := handleDataMap[tmpDate.Format(utils.FormatDate)]; ok {
  717. tmpHistoryLastVal = val
  718. isFindHistoryLast = true
  719. break
  720. }
  721. }
  722. }
  723. // 如果两个日期对应的数据都找到了,那么计算两期的差值
  724. if isFindHistoryCurrent && isFindHistoryLast {
  725. af := decimal.NewFromFloat(tmpHistoryCurrentVal)
  726. bf := decimal.NewFromFloat(tmpHistoryLastVal)
  727. tmpHistoryVal = tmpHistoryVal.Add(af.Sub(bf))
  728. tmpHistoryValNum++
  729. }
  730. }
  731. //计算的差值与选择的年份数量不一致,那么当前日期不计算
  732. if tmpHistoryValNum != len(yearsList) {
  733. continue
  734. }
  735. lastDayValDec := decimal.NewFromFloat(lastDayVal)
  736. val, _ := tmpHistoryVal.Div(decimal.NewFromInt(int64(tmpHistoryValNum))).Add(lastDayValDec).RoundCeil(4).Float64()
  737. currentDateStr := currentDate.Format(utils.FormatDate)
  738. tmpData := &data_manage.EdbDataList{
  739. EdbDataId: edbInfoId + 100000 + index + k,
  740. EdbInfoId: edbInfoId,
  741. DataTime: currentDateStr,
  742. Value: val,
  743. DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  744. }
  745. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  746. allDataList = append(allDataList, tmpData)
  747. existMap[currentDateStr] = val
  748. // 继续使用插值法补充新预测日期的数据之间的值
  749. err = handleDataByLinearRegression([]*data_manage.EdbDataList{
  750. lastDayData, tmpData,
  751. }, handleDataMap)
  752. if err != nil {
  753. return
  754. }
  755. // 最大最小值
  756. if val < minValue {
  757. minValue = val
  758. }
  759. if val > maxValue {
  760. maxValue = val
  761. }
  762. }
  763. return
  764. }
  765. // handleDataByLinearRegression 插值法补充数据(线性方程式)
  766. func handleDataByLinearRegression(edbInfoDataList []*data_manage.EdbDataList, handleDataMap map[string]float64) (err error) {
  767. if len(edbInfoDataList) < 2 {
  768. return
  769. }
  770. var startEdbInfoData *data_manage.EdbDataList
  771. for _, v := range edbInfoDataList {
  772. handleDataMap[v.DataTime] = v.Value
  773. // 第一个数据就给过滤了,给后面的试用
  774. if startEdbInfoData == nil {
  775. startEdbInfoData = v
  776. continue
  777. }
  778. // 获取两条数据之间相差的天数
  779. startDataTime, _ := time.ParseInLocation(utils.FormatDate, startEdbInfoData.DataTime, time.Local)
  780. currDataTime, _ := time.ParseInLocation(utils.FormatDate, v.DataTime, time.Local)
  781. betweenHour := int(currDataTime.Sub(startDataTime).Hours())
  782. betweenDay := betweenHour / 24
  783. // 如果相差一天,那么过滤
  784. if betweenDay <= 1 {
  785. startEdbInfoData = v
  786. continue
  787. }
  788. // 生成线性方程式
  789. var a, b float64
  790. {
  791. coordinateData := make([]utils.Coordinate, 0)
  792. tmpCoordinate1 := utils.Coordinate{
  793. X: 1,
  794. Y: startEdbInfoData.Value,
  795. }
  796. coordinateData = append(coordinateData, tmpCoordinate1)
  797. tmpCoordinate2 := utils.Coordinate{
  798. X: float64(betweenDay) + 1,
  799. Y: v.Value,
  800. }
  801. coordinateData = append(coordinateData, tmpCoordinate2)
  802. a, b = utils.GetLinearResult(coordinateData)
  803. if math.IsNaN(a) || math.IsNaN(b) {
  804. err = errors.New("线性方程公式生成失败")
  805. return
  806. }
  807. }
  808. // 生成对应的值
  809. {
  810. for i := 1; i < betweenDay; i++ {
  811. tmpDataTime := startDataTime.AddDate(0, 0, i)
  812. aDecimal := decimal.NewFromFloat(a)
  813. xDecimal := decimal.NewFromInt(int64(i) + 1)
  814. bDecimal := decimal.NewFromFloat(b)
  815. val, _ := aDecimal.Mul(xDecimal).Add(bDecimal).Round(4).Float64()
  816. handleDataMap[tmpDataTime.Format(utils.FormatDate)] = val
  817. }
  818. }
  819. startEdbInfoData = v
  820. }
  821. return
  822. }
  823. // MoveAverageConf 移动平均同比规则的配置
  824. type MoveAverageConf struct {
  825. Year int `description:"指定年份"`
  826. NValue int `description:"N期的数据"`
  827. }
  828. // GetChartPredictEdbInfoDataListByRuleMoveAverageTb 根据 移动平均同比 规则获取预测数据
  829. //
  830. // ETA预测规则:季节性
  831. // 2、选择指定N年,N=3
  832. // 指定N年为2012、2015、2018
  833. // 指标A日期 实际值 指标A日期 实际值
  834. // 2012/12/5 150 2012/12/6 130
  835. // 2015/12/5 180 2015/12/6 150
  836. // 2018/12/5 210 2018/12/6 260
  837. // 2012/12/31 200 2013/1/1 200
  838. // 2015/12/31 210 2016/1/1 250
  839. // 2018/12/31 250 2019/1/1 270
  840. // 计算12.7预测值,求过去N年环差均值=[(130-150)+(150-180)+(290-210)]/3=10
  841. // 则12.7预测值=12.6值+过去N年环差均值=200+10=210
  842. // 以此类推...
  843. // 计算2023.1.2预测值,求过去N年环差均值=[(200-200)+(250-210)+(270-250)]/3=16.67
  844. // 则2023.1.2预测值=2023.1.1值+过去N年环差均值
  845. func GetChartPredictEdbInfoDataListByRuleMoveAverageTb(edbInfoId int, nValue, year int, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*data_manage.EdbDataList, existMap map[string]float64) (newPredictEdbInfoData []*data_manage.EdbDataList, minValue, maxValue float64, err error) {
  846. allDataList := make([]*data_manage.EdbDataList, 0)
  847. allDataList = append(allDataList, realPredictEdbInfoData...)
  848. allDataList = append(allDataList, predictEdbInfoData...)
  849. newPredictEdbInfoData = predictEdbInfoData
  850. lenAllData := len(allDataList)
  851. if lenAllData < nValue || lenAllData <= 0 {
  852. return
  853. }
  854. if nValue <= 0 {
  855. return
  856. }
  857. // 分母
  858. decimalN := decimal.NewFromInt(int64(nValue))
  859. //获取后面的预测数据
  860. for k, currentDate := range dayList {
  861. tmpLenAllDataList := len(allDataList)
  862. tmpIndex := tmpLenAllDataList - 1 //上1期数据的下标
  863. averageDateList := make([]string, 0) //计算平均数的日期
  864. // 数据集合中的最后一个数据
  865. tmpDecimalVal := decimal.NewFromFloat(allDataList[tmpIndex].Value)
  866. averageDateList = append(averageDateList, allDataList[tmpIndex].DataTime)
  867. for tmpK := 2; tmpK <= nValue; tmpK++ {
  868. tmpIndex2 := tmpIndex - tmpK //上N期的值
  869. tmpDecimalVal2 := decimal.NewFromFloat(allDataList[tmpIndex2].Value)
  870. tmpDecimalVal = tmpDecimalVal.Add(tmpDecimalVal2)
  871. averageDateList = append(averageDateList, allDataList[tmpIndex2].DataTime)
  872. }
  873. // 最近的N期平均值
  874. tmpAverageVal := tmpDecimalVal.Div(decimalN)
  875. var tmpHistoryCurrentVal float64 // 前几年当日的数据值
  876. var isFindHistoryCurrent, isFindHistoryLast bool //是否找到前几年的数据
  877. tmpHistoryDecimalVal := decimal.NewFromFloat(0) //前几年N期数据总值
  878. {
  879. // 前几年N期汇总期数
  880. tmpHistoryValNum := 0
  881. {
  882. //前几年当日的日期
  883. tmpHistoryCurrentDate := currentDate.AddDate(year-currentDate.Year(), 0, 0)
  884. for i := 0; i <= 35; i++ { // 前后35天找数据,找到最近的值,先向后面找,再往前面找
  885. tmpDate := tmpHistoryCurrentDate.AddDate(0, 0, i)
  886. if val, ok := existMap[tmpDate.Format(utils.FormatDate)]; ok {
  887. tmpHistoryCurrentVal = val
  888. isFindHistoryCurrent = true
  889. break
  890. } else {
  891. tmpDate := tmpHistoryCurrentDate.AddDate(0, 0, -i)
  892. if val, ok := existMap[tmpDate.Format(utils.FormatDate)]; ok {
  893. tmpHistoryCurrentVal = val
  894. isFindHistoryCurrent = true
  895. break
  896. }
  897. }
  898. }
  899. }
  900. for _, averageDate := range averageDateList {
  901. lastDay, tmpErr := time.ParseInLocation(utils.FormatDate, averageDate, time.Local)
  902. if tmpErr != nil {
  903. err = tmpErr
  904. return
  905. }
  906. //前几年上一期的日期
  907. tmpHistoryLastDate := lastDay.AddDate(year-lastDay.Year(), 0, 0)
  908. for i := 0; i <= 35; i++ { // 前后35天找数据,找到最近的值,先向后面找,再往前面找
  909. tmpDate := tmpHistoryLastDate.AddDate(0, 0, i)
  910. if val, ok := existMap[tmpDate.Format(utils.FormatDate)]; ok {
  911. tmpDecimalVal2 := decimal.NewFromFloat(val)
  912. tmpHistoryDecimalVal = tmpHistoryDecimalVal.Add(tmpDecimalVal2)
  913. tmpHistoryValNum++
  914. break
  915. } else {
  916. tmpDate := tmpHistoryLastDate.AddDate(0, 0, -i)
  917. if val, ok := existMap[tmpDate.Format(utils.FormatDate)]; ok {
  918. tmpDecimalVal2 := decimal.NewFromFloat(val)
  919. tmpHistoryDecimalVal = tmpHistoryDecimalVal.Add(tmpDecimalVal2)
  920. tmpHistoryValNum++
  921. break
  922. }
  923. }
  924. }
  925. }
  926. // 汇总期数与配置的N期数量一致
  927. if tmpHistoryValNum == nValue {
  928. isFindHistoryLast = true
  929. }
  930. }
  931. // 如果没有找到前几年的汇总数据,或者没有找到前几年当日的数据,那么退出当前循环,进入下一循环
  932. if !isFindHistoryLast || !isFindHistoryCurrent {
  933. continue
  934. }
  935. // 计算最近N期同比值
  936. tbVal := tmpAverageVal.Div(tmpHistoryDecimalVal)
  937. // 预测值结果 = 同比年份同期值(tmpHistoryCurrentVal的值)* 同比值(tbVal的值)
  938. val, _ := decimal.NewFromFloat(tmpHistoryCurrentVal).Mul(tbVal).RoundCeil(4).Float64()
  939. currentDateStr := currentDate.Format(utils.FormatDate)
  940. tmpData := &data_manage.EdbDataList{
  941. EdbDataId: edbInfoId + 100000 + lenAllData + k,
  942. EdbInfoId: edbInfoId,
  943. DataTime: currentDateStr,
  944. Value: val,
  945. DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  946. }
  947. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  948. allDataList = append(allDataList, tmpData)
  949. existMap[currentDateStr] = val
  950. // 最大最小值
  951. if val < minValue {
  952. minValue = val
  953. }
  954. if val > maxValue {
  955. maxValue = val
  956. }
  957. }
  958. return
  959. }
  960. // GetChartPredictEdbInfoDataListByRuleTbzscz 根据 同比增速差值 规则获取预测数据
  961. // 同比增速差值计算方式:
  962. // 1、首先计算出所选指标实际最新日期值的同比增速:(本期数值-同期数值)÷同期数值*100%
  963. // 2、根据预测截止日期的同比增速终值、最新日期值的同比增速、与最新日期距离截止日期的期数,计算出到截止日期为止的每一期的同比增速。(等差规则计算每一期的同比增速,结合去年同期值,计算出每一期的同比预测值)。公差=(末项-首项)÷(n-1),an=a1+(n-1)d,(n为正整数,n大于等于2)
  964. // 3、根据去年同期值和未来每一期的同比增速值,求出同比预测值,同比预测值=同期值*(1+同比增速)
  965. // 同比增速差值:计算最新数据的同比增速((本期数值-同期数值)÷同期数值*100%),结合同比增速终值与期数,计算每一期同比增速,进而求出同比预测值。
  966. //
  967. // 例:如上图所示指标,(1)最新日期值2022-12-31 141175 ,结合同期值,计算同比增速;
  968. // (2)同比增速终值,若为50%, 预测日期为2023-03-31,则根据(1)中的同比增速值与同比增速终值,计算出中间两期的同比增速;
  969. // (3)求出每一期的预测同比值,预测同比值=同期值*(1+同比增速)
  970. func GetChartPredictEdbInfoDataListByRuleTbzscz(edbInfoId int, tbEndValue float64, dayList []time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*data_manage.EdbDataList, existMap map[string]float64) (newPredictEdbInfoData []*data_manage.EdbDataList, minValue, maxValue float64) {
  971. allDataList := make([]*data_manage.EdbDataList, 0)
  972. allDataList = append(allDataList, realPredictEdbInfoData...)
  973. allDataList = append(allDataList, predictEdbInfoData...)
  974. newPredictEdbInfoData = predictEdbInfoData
  975. index := len(allDataList)
  976. // 获取近期数据的同比值
  977. if index <= 0 {
  978. return
  979. }
  980. lastData := allDataList[index-1]
  981. lastDayTime, _ := time.ParseInLocation(utils.FormatDate, lastData.DataTime, time.Local)
  982. var lastTb decimal.Decimal // 计算最新数据与上一期的数据同比值
  983. {
  984. //上一年的日期
  985. preDate := lastDayTime.AddDate(-1, 0, 0)
  986. preDateStr := preDate.Format(utils.FormatDate)
  987. if preValue, ok := existMap[preDateStr]; ok { //上一年同期找到
  988. lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
  989. } else {
  990. switch frequency {
  991. case "月度":
  992. //向上和向下,各找一个月
  993. nextDateDay := preDate
  994. preDateDay := preDate
  995. for i := 0; i <= 35; i++ {
  996. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  997. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  998. lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
  999. break
  1000. } else {
  1001. preDateDayStr := preDateDay.Format(utils.FormatDate)
  1002. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  1003. lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
  1004. break
  1005. }
  1006. }
  1007. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  1008. preDateDay = preDateDay.AddDate(0, 0, -1)
  1009. }
  1010. case "季度", "年度":
  1011. if preValue, ok := existMap[preDateStr]; ok { //上一年同期->下一个月找到
  1012. lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
  1013. break
  1014. }
  1015. default:
  1016. nextDateDay := preDate
  1017. preDateDay := preDate
  1018. for i := 0; i < 35; i++ {
  1019. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  1020. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  1021. lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
  1022. break
  1023. } else {
  1024. preDateDayStr := preDateDay.Format(utils.FormatDate)
  1025. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  1026. lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
  1027. break
  1028. } else {
  1029. //fmt.Println("pre not find:", preDateStr, "i:", i)
  1030. }
  1031. }
  1032. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  1033. preDateDay = preDateDay.AddDate(0, 0, -1)
  1034. }
  1035. }
  1036. }
  1037. }
  1038. //获取后面的预测数据
  1039. lenDay := len(dayList)
  1040. tbEndValueDecimal := decimal.NewFromFloat(tbEndValue)
  1041. avgTbVal := tbEndValueDecimal.Sub(lastTb).Div(decimal.NewFromInt(int64(lenDay)))
  1042. predictEdbInfoData = make([]*data_manage.EdbDataList, 0)
  1043. for k, currentDate := range dayList {
  1044. var tbValue decimal.Decimal
  1045. if k == lenDay-1 { // 如果是最后的日期了,那么就用终值去计算
  1046. tbValue = tbEndValueDecimal.Add(decimal.NewFromInt(1))
  1047. } else { // 最近数据的同比值 + (平均增值乘以当前期数)
  1048. tbValue = lastTb.Add(avgTbVal.Mul(decimal.NewFromInt(int64(k + 1)))).Add(decimal.NewFromInt(1))
  1049. }
  1050. tmpData := &data_manage.EdbDataList{
  1051. EdbDataId: edbInfoId + 100000 + index + k,
  1052. EdbInfoId: edbInfoId,
  1053. DataTime: currentDate.Format(utils.FormatDate),
  1054. //Value: dataValue,
  1055. DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  1056. }
  1057. var val float64
  1058. var calculateStatus bool //计算结果
  1059. //currentItem := existMap[av]
  1060. //上一年的日期
  1061. preDate := currentDate.AddDate(-1, 0, 0)
  1062. preDateStr := preDate.Format(utils.FormatDate)
  1063. if preValue, ok := existMap[preDateStr]; ok { //上一年同期找到
  1064. val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).RoundCeil(4).Float64()
  1065. calculateStatus = true
  1066. } else {
  1067. switch frequency {
  1068. case "月度":
  1069. //向上和向下,各找一个月
  1070. nextDateDay := preDate
  1071. preDateDay := preDate
  1072. for i := 0; i <= 35; i++ {
  1073. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  1074. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  1075. val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).RoundCeil(4).Float64()
  1076. calculateStatus = true
  1077. break
  1078. } else {
  1079. preDateDayStr := preDateDay.Format(utils.FormatDate)
  1080. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  1081. val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).RoundCeil(4).Float64()
  1082. calculateStatus = true
  1083. break
  1084. }
  1085. }
  1086. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  1087. preDateDay = preDateDay.AddDate(0, 0, -1)
  1088. }
  1089. case "季度", "年度":
  1090. if preValue, ok := existMap[preDateStr]; ok { //上一年同期->下一个月找到
  1091. val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).RoundCeil(4).Float64()
  1092. calculateStatus = true
  1093. break
  1094. }
  1095. default:
  1096. nextDateDay := preDate
  1097. preDateDay := preDate
  1098. for i := 0; i < 35; i++ {
  1099. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  1100. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  1101. val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).RoundCeil(4).Float64()
  1102. calculateStatus = true
  1103. break
  1104. } else {
  1105. preDateDayStr := preDateDay.Format(utils.FormatDate)
  1106. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  1107. val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).RoundCeil(4).Float64()
  1108. calculateStatus = true
  1109. break
  1110. } else {
  1111. //fmt.Println("pre not find:", preDateStr, "i:", i)
  1112. }
  1113. }
  1114. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  1115. preDateDay = preDateDay.AddDate(0, 0, -1)
  1116. }
  1117. }
  1118. }
  1119. if calculateStatus {
  1120. tmpData.Value = val
  1121. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  1122. allDataList = append(allDataList, tmpData)
  1123. existMap[tmpData.DataTime] = val
  1124. // 最大最小值
  1125. if val < minValue {
  1126. minValue = val
  1127. }
  1128. if val > maxValue {
  1129. maxValue = val
  1130. }
  1131. }
  1132. }
  1133. return
  1134. }
  1135. // RuleLineNhConf 一元线性拟合规则的配置
  1136. type RuleLineNhConf struct {
  1137. StartDate string `description:"开始日期"`
  1138. EndDate string `description:"结束日期"`
  1139. MoveDay int `description:"移动天数"`
  1140. EdbInfoId int `description:"指标id"`
  1141. }
  1142. // GetChartPredictEdbInfoDataListByRuleLineNh 根据 一元线性拟合 的计算规则获取预测数据
  1143. //
  1144. // 选择被预测的指标B(作为自变量,非预测指标),选择指标A(作为因变量,可以是基础指标和预测指标)
  1145. // 2、选择拟合时间段,起始日期至今或指定时间段,选择至今,在计算时截止到指标B的最新日期
  1146. // 3、设定A领先B时间(天),正整数、负整数、0
  1147. // 4、调用拟合残差的数据预处理和算法,给出拟合方程Y=aX+b的系数a,b
  1148. // 5、指标A代入拟合方程得到拟合预测指标B',拟合预测指标使用指标B的频度,在指标B的实际值后面连接拟合预测指标B'对应日期的预测值
  1149. //
  1150. // 注:选择预测截止日期,若所选日期 ≤ 指标A设置领先后的日期序列,则预测指标日期最新日期有值(在指标B'的有值范围内);若所选日期 > 指标A设置领先后的日期序列,则预测指标只到指标A领先后的日期序列(超出指标B'的有值范围,最多到指标B'的最新值);指标A、B更新后,更新预测指标
  1151. func GetChartPredictEdbInfoDataListByRuleLineNh(edbInfoId int, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*data_manage.EdbDataList, newNhccDataMap, existMap map[string]float64) (newPredictEdbInfoData []*data_manage.EdbDataList, minValue, maxValue float64, err error) {
  1152. allDataList := make([]*data_manage.EdbDataList, 0)
  1153. allDataList = append(allDataList, realPredictEdbInfoData...)
  1154. allDataList = append(allDataList, predictEdbInfoData...)
  1155. newPredictEdbInfoData = predictEdbInfoData
  1156. lenAllData := len(allDataList)
  1157. if lenAllData <= 0 {
  1158. return
  1159. }
  1160. for k, currentDate := range dayList {
  1161. // 动态拟合残差值数据
  1162. currentDateStr := currentDate.Format(utils.FormatDate)
  1163. val, ok := newNhccDataMap[currentDateStr]
  1164. if !ok {
  1165. continue
  1166. }
  1167. tmpData := &data_manage.EdbDataList{
  1168. EdbDataId: edbInfoId + 100000 + lenAllData + k,
  1169. EdbInfoId: edbInfoId,
  1170. DataTime: currentDateStr,
  1171. Value: val,
  1172. DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  1173. }
  1174. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  1175. allDataList = append(allDataList, tmpData)
  1176. existMap[currentDateStr] = val
  1177. // 最大最小值
  1178. if val < minValue {
  1179. minValue = val
  1180. }
  1181. if val > maxValue {
  1182. maxValue = val
  1183. }
  1184. }
  1185. return
  1186. }
  1187. // getCalculateNhccData 获取计算出来的 拟合残差 数据
  1188. func getCalculateNhccData(secondDataList []*data_manage.EdbDataList, ruleConf RuleLineNhConf) (newBDataMap map[string]float64, err error) {
  1189. firstEdbInfoId := ruleConf.EdbInfoId
  1190. moveDay := ruleConf.MoveDay
  1191. startDate, _ := time.ParseInLocation(utils.FormatDate, ruleConf.StartDate, time.Local)
  1192. endDate, _ := time.ParseInLocation(utils.FormatDate, ruleConf.EndDate, time.Local)
  1193. //查询当前指标现有的数据
  1194. edbInfo, err := data_manage.GetEdbInfoById(firstEdbInfoId)
  1195. if err != nil {
  1196. return
  1197. }
  1198. //第一个指标
  1199. aDataList := make([]data_manage.EdbDataList, 0)
  1200. aDataMap := make(map[string]float64)
  1201. {
  1202. //第一个指标的数据列表
  1203. var firstDataList []*data_manage.EdbDataList
  1204. switch edbInfo.EdbInfoType {
  1205. case 0:
  1206. firstDataList, err = data_manage.GetEdbDataList(edbInfo.Source, edbInfo.EdbInfoId, ``, ``)
  1207. case 1:
  1208. _, firstDataList, _, _, err, _ = GetPredictDataListByPredictEdbInfoId(edbInfo.EdbInfoId, ``, ``, false)
  1209. default:
  1210. err = errors.New(fmt.Sprint("获取失败,指标类型异常", edbInfo.EdbInfoType))
  1211. }
  1212. if err != nil {
  1213. return
  1214. }
  1215. aDataList, aDataMap = handleNhccData(firstDataList, moveDay)
  1216. }
  1217. //第二个指标
  1218. bDataList := make([]data_manage.EdbDataList, 0)
  1219. bDataMap := make(map[string]float64)
  1220. {
  1221. bDataList, bDataMap = handleNhccData(secondDataList, 0)
  1222. }
  1223. if len(aDataList) <= 0 {
  1224. err = errors.New("指标A没有数据")
  1225. return
  1226. }
  1227. if len(bDataList) <= 0 {
  1228. err = errors.New("指标B没有数据")
  1229. return
  1230. }
  1231. // 拟合残差计算的结束日期判断
  1232. {
  1233. endAData := aDataList[len(aDataList)-1]
  1234. tmpEndDate, tmpErr := time.ParseInLocation(utils.FormatDate, endAData.DataTime, time.Local)
  1235. if tmpErr != nil {
  1236. err = tmpErr
  1237. return
  1238. }
  1239. // 如果A指标的最新数据日期早于拟合残差的结束日期,那么就用A指标的最新数据日期
  1240. if tmpEndDate.Before(endDate) {
  1241. endDate = tmpEndDate
  1242. }
  1243. endBData := bDataList[len(bDataList)-1]
  1244. tmpEndDate, tmpErr = time.ParseInLocation(utils.FormatDate, endBData.DataTime, time.Local)
  1245. if tmpErr != nil {
  1246. err = tmpErr
  1247. return
  1248. }
  1249. // 如果B指标的最新数据日期早于拟合残差的结束日期,那么就用A指标的最新数据日期
  1250. if tmpEndDate.Before(endDate) {
  1251. endDate = tmpEndDate
  1252. }
  1253. }
  1254. // 计算线性方程公式
  1255. var a, b float64
  1256. {
  1257. coordinateData := make([]utils.Coordinate, 0)
  1258. for i := startDate; i.Before(endDate) || i.Equal(endDate); i = i.AddDate(0, 0, 1) {
  1259. dateStr := i.Format(utils.FormatDate)
  1260. xValue, ok := aDataMap[dateStr]
  1261. if !ok {
  1262. err = errors.New("指标A日期:" + dateStr + "数据异常,导致计算线性方程公式失败")
  1263. return
  1264. }
  1265. yValue, ok := bDataMap[dateStr]
  1266. if !ok {
  1267. err = errors.New("指标B日期:" + dateStr + "数据异常,导致计算线性方程公式失败")
  1268. return
  1269. }
  1270. tmpCoordinate := utils.Coordinate{
  1271. X: xValue,
  1272. Y: yValue,
  1273. }
  1274. coordinateData = append(coordinateData, tmpCoordinate)
  1275. }
  1276. a, b = utils.GetLinearResult(coordinateData)
  1277. }
  1278. if math.IsNaN(a) || math.IsNaN(b) {
  1279. err = errors.New("线性方程公式生成失败")
  1280. return
  1281. }
  1282. //fmt.Println("a:", a, ";======b:", b)
  1283. //计算B’
  1284. newBDataMap = make(map[string]float64)
  1285. {
  1286. //B’=aA+b
  1287. aDecimal := decimal.NewFromFloat(a)
  1288. bDecimal := decimal.NewFromFloat(b)
  1289. for _, aData := range aDataList {
  1290. xDecimal := decimal.NewFromFloat(aData.Value)
  1291. val, _ := aDecimal.Mul(xDecimal).Add(bDecimal).RoundCeil(4).Float64()
  1292. newBDataMap[aData.DataTime] = val
  1293. }
  1294. }
  1295. return
  1296. }
  1297. // handleNhccData 处理拟合残差需要的数据
  1298. func handleNhccData(dataList []*data_manage.EdbDataList, moveDay int) (newDataList []data_manage.EdbDataList, dateDataMap map[string]float64) {
  1299. dateMap := make(map[time.Time]float64)
  1300. var minDate, maxDate time.Time
  1301. dateDataMap = make(map[string]float64)
  1302. for _, v := range dataList {
  1303. currDate, _ := time.ParseInLocation(utils.FormatDate, v.DataTime, time.Local)
  1304. if minDate.IsZero() || currDate.Before(minDate) {
  1305. minDate = currDate
  1306. }
  1307. if maxDate.IsZero() || currDate.After(maxDate) {
  1308. maxDate = currDate
  1309. }
  1310. dateMap[currDate] = v.Value
  1311. }
  1312. // 处理领先、滞后数据
  1313. newDateMap := make(map[time.Time]float64)
  1314. for currDate, value := range dateMap {
  1315. newDate := currDate.AddDate(0, 0, moveDay)
  1316. newDateMap[newDate] = value
  1317. }
  1318. minDate = minDate.AddDate(0, 0, moveDay)
  1319. maxDate = maxDate.AddDate(0, 0, moveDay)
  1320. // 开始平移天数
  1321. dayNum := utils.GetTimeSubDay(minDate, maxDate)
  1322. for i := 0; i <= dayNum; i++ {
  1323. currDate := minDate.AddDate(0, 0, i)
  1324. tmpValue, ok := newDateMap[currDate]
  1325. if !ok {
  1326. // 万一没有数据,那么就过滤当次循环
  1327. if len(newDataList) <= 0 {
  1328. continue
  1329. }
  1330. //找不到数据,那么就用前面的数据吧
  1331. tmpValue = newDataList[len(newDataList)-1].Value
  1332. }
  1333. tmpData := data_manage.EdbDataList{
  1334. //EdbDataId: 0,
  1335. DataTime: currDate.Format(utils.FormatDate),
  1336. Value: tmpValue,
  1337. }
  1338. dateDataMap[tmpData.DataTime] = tmpData.Value
  1339. newDataList = append(newDataList, tmpData)
  1340. }
  1341. return
  1342. }