predict_edb_info.go 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646
  1. package data
  2. import (
  3. "encoding/json"
  4. "errors"
  5. "fmt"
  6. "github.com/shopspring/decimal"
  7. "hongze/hongze_ETA_mobile_api/models/data_manage"
  8. "hongze/hongze_ETA_mobile_api/utils"
  9. "strconv"
  10. "time"
  11. )
  12. // GetPredictEdbInfoDataList 获取预测指标的未来数据
  13. func GetPredictEdbInfoDataList(predictEdbConf data_manage.PredictEdbConf, latestDateStr string, lastDataValue float64, endDateStr, frequency string) (predictEdbInfoData []*data_manage.EdbData, err error) {
  14. endDate, err := time.ParseInLocation(utils.FormatDate, endDateStr, time.Local)
  15. if err != nil {
  16. return
  17. }
  18. latestDate, err := time.ParseInLocation(utils.FormatDate, latestDateStr, time.Local)
  19. if err != nil {
  20. return
  21. }
  22. dataValue := lastDataValue
  23. if predictEdbConf.RuleType == 2 {
  24. dataValue = predictEdbConf.FixedValue
  25. }
  26. //获取后面的预测数据
  27. dayList := getPredictEdbDayList(latestDate, endDate, frequency)
  28. predictEdbInfoData = make([]*data_manage.EdbData, 0)
  29. lenDayList := len(dayList)
  30. if lenDayList > 0 {
  31. for i := lenDayList - 1; i >= 0; i-- {
  32. v := dayList[i]
  33. predictEdbInfoData = append(predictEdbInfoData, &data_manage.EdbData{
  34. EdbDataId: predictEdbConf.PredictEdbInfoId + 100000 + i,
  35. EdbInfoId: predictEdbConf.PredictEdbInfoId,
  36. DataTime: v.Format(utils.FormatDate),
  37. Value: dataValue,
  38. })
  39. }
  40. }
  41. return
  42. }
  43. // GetChartPredictEdbInfoDataList 获取图表的预测指标的未来数据
  44. func GetChartPredictEdbInfoDataList(predictEdbConf data_manage.PredictEdbConf, filtrateStartDateStr, latestDateStr string, lastDataValue float64, endDateStr, frequency string) (predictEdbInfoData []*data_manage.EdbDataList, err error) {
  45. endDate, err := time.ParseInLocation(utils.FormatDate, endDateStr, time.Local)
  46. if err != nil {
  47. return
  48. }
  49. latestDate, err := time.ParseInLocation(utils.FormatDate, latestDateStr, time.Local)
  50. if err != nil {
  51. return
  52. }
  53. // 开始预测数据的时间
  54. startDate := latestDate
  55. // 如果有筛选时间的话
  56. if filtrateStartDateStr != `` {
  57. filtrateStartDate, tmpErr := time.ParseInLocation(utils.FormatDate, filtrateStartDateStr, time.Local)
  58. if tmpErr != nil {
  59. err = tmpErr
  60. return
  61. }
  62. //如果筛选时间晚于实际数据时间,那么就以筛选时间作为获取预测数据的时间
  63. if filtrateStartDate.After(latestDate) {
  64. startDate = filtrateStartDate.AddDate(0, 0, -1)
  65. }
  66. }
  67. dataValue := lastDataValue
  68. if predictEdbConf.RuleType == 2 {
  69. dataValue = predictEdbConf.FixedValue
  70. }
  71. //获取后面的预测数据
  72. dayList := getPredictEdbDayList(startDate, endDate, frequency)
  73. predictEdbInfoData = make([]*data_manage.EdbDataList, 0)
  74. for k, v := range dayList {
  75. predictEdbInfoData = append(predictEdbInfoData, &data_manage.EdbDataList{
  76. EdbDataId: predictEdbConf.PredictEdbInfoId + 100000 + k,
  77. EdbInfoId: predictEdbConf.PredictEdbInfoId,
  78. DataTime: v.Format(utils.FormatDate),
  79. Value: dataValue,
  80. DataTimestamp: (v.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  81. })
  82. }
  83. return
  84. }
  85. // GetChartPredictEdbInfoDataListByConfList 获取图表的预测指标的未来数据
  86. func GetChartPredictEdbInfoDataListByConfList(predictEdbConfList []data_manage.PredictEdbConfAndData, filtrateStartDateStr, latestDateStr, endDateStr, frequency string, realPredictEdbInfoData []*data_manage.EdbDataList) (predictEdbInfoData []*data_manage.EdbDataList, minValue, maxValue float64, err error, errMsg string) {
  87. endDate, err := time.ParseInLocation(utils.FormatDate, endDateStr, time.Local)
  88. if err != nil {
  89. return
  90. }
  91. latestDate, err := time.ParseInLocation(utils.FormatDate, latestDateStr, time.Local)
  92. if err != nil {
  93. return
  94. }
  95. // 开始预测数据的时间
  96. startDate := latestDate
  97. // 如果有筛选时间的话
  98. if filtrateStartDateStr != `` {
  99. filtrateStartDate, tmpErr := time.ParseInLocation(utils.FormatDate, filtrateStartDateStr, time.Local)
  100. if tmpErr != nil {
  101. err = tmpErr
  102. return
  103. }
  104. //如果筛选时间晚于实际数据时间,那么就以筛选时间作为获取预测数据的时间
  105. if filtrateStartDate.After(latestDate) {
  106. startDate = filtrateStartDate.AddDate(0, 0, -1)
  107. }
  108. }
  109. //var dateArr []string
  110. // 对应日期的值
  111. existMap := make(map[string]float64)
  112. for _, v := range realPredictEdbInfoData {
  113. //dateArr = append(dateArr, v.DataTime)
  114. existMap[v.DataTime] = v.Value
  115. }
  116. predictEdbInfoData = make([]*data_manage.EdbDataList, 0)
  117. //dataValue := lastDataValue
  118. //预测规则,1:最新,2:固定值,3:同比,4:同差,5:环比,6:环差,7:N期移动均值,8:N期段线性外推值
  119. for _, predictEdbConf := range predictEdbConfList {
  120. dataEndTime := endDate
  121. if predictEdbConf.EndDate.Before(dataEndTime) {
  122. dataEndTime = predictEdbConf.EndDate
  123. }
  124. var tmpMinValue, tmpMaxValue float64 // 当前预测结果中的最大/最小值
  125. dayList := getPredictEdbDayList(startDate, dataEndTime, frequency)
  126. if len(dayList) <= 0 { // 如果未来没有日期的话,那么就退出当前循环,进入下一个循环
  127. continue
  128. }
  129. switch predictEdbConf.RuleType {
  130. case 1: //1:最新
  131. var lastDataValue float64 //最新值
  132. tmpAllData := make([]*data_manage.EdbDataList, 0)
  133. tmpAllData = append(tmpAllData, realPredictEdbInfoData...)
  134. tmpAllData = append(tmpAllData, predictEdbInfoData...)
  135. lenTmpAllData := len(tmpAllData)
  136. if lenTmpAllData > 0 {
  137. lastDataValue = tmpAllData[lenTmpAllData-1].Value
  138. }
  139. predictEdbInfoData = GetChartPredictEdbInfoDataListByRule1(predictEdbConf.PredictEdbInfoId, lastDataValue, dayList, predictEdbInfoData, existMap)
  140. tmpMaxValue = lastDataValue
  141. tmpMinValue = lastDataValue
  142. case 2: //2:固定值
  143. tmpValDecimal, tmpErr := decimal.NewFromString(predictEdbConf.Value)
  144. if tmpErr != nil {
  145. err = tmpErr
  146. return
  147. }
  148. dataValue, _ := tmpValDecimal.Float64()
  149. predictEdbInfoData = GetChartPredictEdbInfoDataListByRule1(predictEdbConf.PredictEdbInfoId, dataValue, dayList, predictEdbInfoData, existMap)
  150. tmpMaxValue = dataValue
  151. tmpMinValue = dataValue
  152. case 3: //3:同比
  153. tmpValDecimal, tmpErr := decimal.NewFromString(predictEdbConf.Value)
  154. if tmpErr != nil {
  155. err = tmpErr
  156. return
  157. }
  158. tbValue, _ := tmpValDecimal.Float64()
  159. predictEdbInfoData, tmpMinValue, tmpMaxValue = GetChartPredictEdbInfoDataListByRuleTb(predictEdbConf.PredictEdbInfoId, tbValue, dayList, frequency, realPredictEdbInfoData, predictEdbInfoData, existMap)
  160. case 4: //4:同差
  161. tmpValDecimal, tmpErr := decimal.NewFromString(predictEdbConf.Value)
  162. if tmpErr != nil {
  163. err = tmpErr
  164. return
  165. }
  166. tcValue, _ := tmpValDecimal.Float64()
  167. predictEdbInfoData, tmpMinValue, tmpMaxValue = GetChartPredictEdbInfoDataListByRuleTc(predictEdbConf.PredictEdbInfoId, tcValue, dayList, frequency, realPredictEdbInfoData, predictEdbInfoData, existMap)
  168. case 5: //5:环比
  169. tmpValDecimal, tmpErr := decimal.NewFromString(predictEdbConf.Value)
  170. if tmpErr != nil {
  171. err = tmpErr
  172. return
  173. }
  174. hbValue, _ := tmpValDecimal.Float64()
  175. predictEdbInfoData, tmpMinValue, tmpMaxValue = GetChartPredictEdbInfoDataListByRuleHb(predictEdbConf.PredictEdbInfoId, hbValue, dayList, realPredictEdbInfoData, predictEdbInfoData, existMap)
  176. case 6: //6:环差
  177. tmpValDecimal, tmpErr := decimal.NewFromString(predictEdbConf.Value)
  178. if tmpErr != nil {
  179. err = tmpErr
  180. return
  181. }
  182. hcValue, _ := tmpValDecimal.Float64()
  183. predictEdbInfoData, tmpMinValue, tmpMaxValue = GetChartPredictEdbInfoDataListByRuleHc(predictEdbConf.PredictEdbInfoId, hcValue, dayList, realPredictEdbInfoData, predictEdbInfoData, existMap)
  184. case 7: //7:N期移动均值
  185. nValue, tmpErr := strconv.Atoi(predictEdbConf.Value)
  186. if tmpErr != nil {
  187. err = tmpErr
  188. return
  189. }
  190. predictEdbInfoData, tmpMinValue, tmpMaxValue = GetChartPredictEdbInfoDataListByRuleNMoveMeanValue(predictEdbConf.PredictEdbInfoId, nValue, dayList, realPredictEdbInfoData, predictEdbInfoData, existMap)
  191. case 8: //8:N期段线性外推值
  192. nValue, tmpErr := strconv.Atoi(predictEdbConf.Value)
  193. if tmpErr != nil {
  194. err = tmpErr
  195. return
  196. }
  197. if nValue <= 1 {
  198. errMsg = `N期段线性外推值的N值必须大于1`
  199. err = errors.New(errMsg)
  200. return
  201. }
  202. predictEdbInfoData, tmpMinValue, tmpMaxValue, err = GetChartPredictEdbInfoDataListByRuleNLinearRegression(predictEdbConf.PredictEdbInfoId, nValue, dayList, realPredictEdbInfoData, predictEdbInfoData, existMap)
  203. if err != nil {
  204. return
  205. }
  206. case 9: //9:动态环差”预测规则;
  207. //规则计算的环差值map
  208. hcDataMap := make(map[string]float64)
  209. if predictEdbConf.PredictEdbInfoId > 0 { //已经生成的动态数据
  210. tmpPredictEdbRuleDataList, tmpErr := data_manage.GetPredictEdbRuleDataList(predictEdbConf.PredictEdbInfoId, predictEdbConf.ConfigId, startDate.Format(utils.FormatDate), endDate.Format(utils.FormatDate))
  211. if tmpErr != nil {
  212. err = tmpErr
  213. return
  214. }
  215. for _, v := range tmpPredictEdbRuleDataList {
  216. hcDataMap[v.DataTime] = v.Value
  217. }
  218. } else { //未生成的动态数据,需要使用外部传入的数据进行计算
  219. if len(predictEdbConf.DataList) <= 0 {
  220. return
  221. }
  222. for _, v := range predictEdbConf.DataList {
  223. currentDate, tmpErr := time.ParseInLocation(utils.FormatDate, v.DataTime, time.Local)
  224. if tmpErr != nil {
  225. continue
  226. }
  227. // 只处理时间段内的数据
  228. if currentDate.Before(startDate) || currentDate.After(endDate) {
  229. continue
  230. }
  231. hcDataMap[v.DataTime] = v.Value
  232. }
  233. }
  234. predictEdbInfoData, tmpMinValue, tmpMaxValue = GetChartPredictEdbInfoDataListByRuleTrendsHC(predictEdbConf.PredictEdbInfoId, dayList, realPredictEdbInfoData, predictEdbInfoData, hcDataMap, existMap)
  235. case 10: //10:根据 给定终值后插值 规则获取预测数据
  236. tmpValDecimal, tmpErr := decimal.NewFromString(predictEdbConf.Value)
  237. if tmpErr != nil {
  238. err = tmpErr
  239. return
  240. }
  241. finalValue, _ := tmpValDecimal.Float64()
  242. predictEdbInfoData, tmpMinValue, tmpMaxValue = GetChartPredictEdbInfoDataListByRuleFinalValueHc(predictEdbConf.PredictEdbInfoId, finalValue, dayList, realPredictEdbInfoData, predictEdbInfoData, existMap)
  243. case 11: //11:根据 季节性 规则获取预测数据
  244. var seasonConf SeasonConf
  245. tmpErr := json.Unmarshal([]byte(predictEdbConf.Value), &seasonConf)
  246. if tmpErr != nil {
  247. err = errors.New("季节性配置信息异常:" + tmpErr.Error())
  248. return
  249. }
  250. calendar := "公历"
  251. if seasonConf.Calendar == "农历" {
  252. calendar = "农历"
  253. }
  254. yearList := make([]int, 0)
  255. //选择方式,1:连续N年;2:指定年份
  256. if seasonConf.YearType == 1 {
  257. if seasonConf.NValue < 1 {
  258. err = errors.New("连续N年不允许小于1")
  259. return
  260. }
  261. currYear := time.Now().Year()
  262. for i := 0; i < seasonConf.NValue; i++ {
  263. yearList = append(yearList, currYear-i-1)
  264. }
  265. } else {
  266. yearList = seasonConf.YearList
  267. }
  268. predictEdbInfoData, tmpMinValue, tmpMaxValue, err = GetChartPredictEdbInfoDataListByRuleSeason(predictEdbConf.PredictEdbInfoId, yearList, calendar, dayList, realPredictEdbInfoData, predictEdbInfoData, existMap)
  269. if err != nil {
  270. return
  271. }
  272. case 12: //12:根据 移动平均同比 规则获取预测数据
  273. var moveAverageConf MoveAverageConf
  274. tmpErr := json.Unmarshal([]byte(predictEdbConf.Value), &moveAverageConf)
  275. if tmpErr != nil {
  276. err = errors.New("季节性配置信息异常:" + tmpErr.Error())
  277. return
  278. }
  279. predictEdbInfoData, tmpMinValue, tmpMaxValue, err = GetChartPredictEdbInfoDataListByRuleMoveAverageTb(predictEdbConf.PredictEdbInfoId, moveAverageConf.NValue, moveAverageConf.Year, dayList, realPredictEdbInfoData, predictEdbInfoData, existMap)
  280. if err != nil {
  281. return
  282. }
  283. case 13: //13:根据 同比增速差值 规则获取预测数据
  284. tmpValDecimal, tmpErr := decimal.NewFromString(predictEdbConf.Value)
  285. if tmpErr != nil {
  286. err = tmpErr
  287. return
  288. }
  289. tbEndValue, _ := tmpValDecimal.Float64()
  290. predictEdbInfoData, tmpMinValue, tmpMaxValue = GetChartPredictEdbInfoDataListByRuleTbzscz(predictEdbConf.PredictEdbInfoId, tbEndValue, dayList, frequency, realPredictEdbInfoData, predictEdbInfoData, existMap)
  291. case 14: //14:根据 一元线性拟合 规则获取预测数据
  292. var ruleConf RuleLineNhConf
  293. err = json.Unmarshal([]byte(predictEdbConf.Value), &ruleConf)
  294. if err != nil {
  295. err = errors.New("一元线性拟合配置信息异常:" + err.Error())
  296. return
  297. }
  298. // 规则计算的拟合残差值map
  299. newNhccDataMap := make(map[string]float64)
  300. if predictEdbConf.PredictEdbInfoId > 0 { //已经生成的动态数据
  301. tmpPredictEdbRuleDataList, tmpErr := data_manage.GetPredictEdbRuleDataList(predictEdbConf.PredictEdbInfoId, predictEdbConf.ConfigId, "", "")
  302. if tmpErr != nil {
  303. err = tmpErr
  304. return
  305. }
  306. for _, v := range tmpPredictEdbRuleDataList {
  307. newNhccDataMap[v.DataTime] = v.Value
  308. }
  309. } else { //未生成的动态数据,需要使用外部传入的数据进行计算
  310. newNhccDataMap, err = getCalculateNhccData(append(realPredictEdbInfoData, predictEdbInfoData...), ruleConf)
  311. if err != nil {
  312. return
  313. }
  314. }
  315. predictEdbInfoData, tmpMinValue, tmpMaxValue, err = GetChartPredictEdbInfoDataListByRuleLineNh(predictEdbConf.PredictEdbInfoId, dayList, realPredictEdbInfoData, predictEdbInfoData, newNhccDataMap, existMap)
  316. if err != nil {
  317. return
  318. }
  319. case 15: //15:N年均值:过去N年同期均值。过去N年可以连续或者不连续,指标数据均用线性插值补全为日度数据后计算;
  320. predictEdbInfoData, tmpMinValue, tmpMaxValue, err = GetChartPredictEdbInfoDataListByRuleNAnnualAverage(predictEdbConf.PredictEdbInfoId, predictEdbConf.Value, dayList, realPredictEdbInfoData, predictEdbInfoData, existMap)
  321. if err != nil {
  322. return
  323. }
  324. case 16: //16:年度值倒推
  325. predictEdbInfoData, tmpMinValue, tmpMaxValue, err = GetChartPredictEdbInfoDataListByRuleAnnualValueInversion(predictEdbConf.PredictEdbInfoId, predictEdbConf.Value, dayList, frequency, realPredictEdbInfoData, predictEdbInfoData, existMap)
  326. if err != nil {
  327. return
  328. }
  329. }
  330. //startDate = dataEndTime.AddDate(0, 0, 1)
  331. if startDate.Before(dataEndTime) {
  332. startDate = dataEndTime
  333. }
  334. if tmpMinValue < minValue {
  335. minValue = tmpMinValue
  336. }
  337. if tmpMaxValue > maxValue {
  338. maxValue = tmpMaxValue
  339. }
  340. }
  341. return
  342. }
  343. // GetPredictEdbDayList 获取预测指标日期列表
  344. func getPredictEdbDayList(startDate, endDate time.Time, frequency string) (dayList []time.Time) {
  345. //if !utils.InArrayByStr([]string{"日度", "周度", "月度"}, frequency)
  346. switch frequency {
  347. case "日度":
  348. for currDate := startDate.AddDate(0, 0, 1); currDate.Before(endDate) || currDate.Equal(endDate); currDate = currDate.AddDate(0, 0, 1) {
  349. //周六、日排除
  350. if currDate.Weekday() == time.Sunday || currDate.Weekday() == time.Saturday {
  351. continue
  352. }
  353. dayList = append(dayList, currDate)
  354. }
  355. case "周度":
  356. //nextDate := startDate.AddDate(0, 0, 7)
  357. for currDate := startDate.AddDate(0, 0, 7); currDate.Before(endDate) || currDate.Equal(endDate); currDate = currDate.AddDate(0, 0, 7) {
  358. dayList = append(dayList, currDate)
  359. }
  360. case "月度":
  361. for currDate := startDate; currDate.Before(endDate) || currDate.Equal(endDate); {
  362. currDate = time.Date(currDate.Year(), currDate.Month(), 1, 0, 0, 0, 0, time.Now().Location()).AddDate(0, 1, -1)
  363. if !currDate.After(endDate) && !currDate.Equal(startDate) {
  364. dayList = append(dayList, currDate)
  365. }
  366. currDate = currDate.AddDate(0, 0, 1)
  367. }
  368. case "年度":
  369. for currDate := startDate; currDate.Before(endDate) || currDate.Equal(endDate); {
  370. currDate = time.Date(currDate.Year()+1, 12, 31, 0, 0, 0, 0, time.Now().Location())
  371. if !currDate.After(endDate) && !currDate.Equal(startDate) {
  372. dayList = append(dayList, currDate)
  373. }
  374. }
  375. }
  376. return
  377. }
  378. // GetPredictDataListByPredictEdbInfoId 根据预测指标id获取预测指标的数据
  379. func GetPredictDataListByPredictEdbInfoId(edbInfoId int, startDate, endDate string, isTimeBetween bool) (edbInfo *data_manage.EdbInfo, dataList []*data_manage.EdbDataList, sourceEdbInfoItem *data_manage.EdbInfo, predictEdbConf *data_manage.PredictEdbConf, err error, errMsg string) {
  380. edbInfo, err = data_manage.GetEdbInfoById(edbInfoId)
  381. if err != nil {
  382. errMsg = `获取预测指标信息失败`
  383. return
  384. }
  385. dataList, sourceEdbInfoItem, predictEdbConf, err, errMsg = GetPredictDataListByPredictEdbInfo(edbInfo, startDate, endDate, isTimeBetween)
  386. return
  387. }
  388. // GetPredictDataListByPredictEdbInfo 根据预测指标信息获取预测指标的数据
  389. func GetPredictDataListByPredictEdbInfo(edbInfo *data_manage.EdbInfo, startDate, endDate string, isTimeBetween bool) (dataList []*data_manage.EdbDataList, sourceEdbInfoItem *data_manage.EdbInfo, predictEdbConf *data_manage.PredictEdbConf, err error, errMsg string) {
  390. // 非计算指标,直接从表里获取数据
  391. if edbInfo.EdbType != 1 {
  392. if !isTimeBetween { //如果不是区间数据,那么就结束日期为空
  393. endDate = ``
  394. }
  395. return GetPredictCalculateDataListByPredictEdbInfo(edbInfo, startDate, endDate)
  396. }
  397. // 查找该预测指标配置
  398. predictEdbConfList, err := data_manage.GetPredictEdbConfListById(edbInfo.EdbInfoId)
  399. if err != nil && err.Error() != utils.ErrNoRow() {
  400. errMsg = "获取预测指标配置信息失败"
  401. return
  402. }
  403. if len(predictEdbConfList) == 0 {
  404. errMsg = "获取预测指标配置信息失败"
  405. err = errors.New(errMsg)
  406. return
  407. }
  408. predictEdbConf = predictEdbConfList[0]
  409. // 来源指标
  410. sourceEdbInfoItem, err = data_manage.GetEdbInfoById(predictEdbConf.SourceEdbInfoId)
  411. if err != nil {
  412. if err.Error() == utils.ErrNoRow() {
  413. errMsg = "找不到来源指标信息"
  414. err = errors.New(errMsg)
  415. }
  416. return
  417. }
  418. allDataList := make([]*data_manage.EdbDataList, 0)
  419. //获取指标数据(实际已生成)
  420. dataList, err = data_manage.GetEdbDataList(sourceEdbInfoItem.Source, sourceEdbInfoItem.EdbInfoId, startDate, endDate)
  421. if err != nil {
  422. return
  423. }
  424. // 如果选择了日期,那么需要筛选所有的数据,用于未来指标的生成
  425. if startDate != `` {
  426. allDataList, err = data_manage.GetEdbDataList(sourceEdbInfoItem.Source, sourceEdbInfoItem.EdbInfoId, "", "")
  427. if err != nil {
  428. return
  429. }
  430. } else {
  431. allDataList = dataList
  432. }
  433. // 获取预测指标未来的数据
  434. predictDataList := make([]*data_manage.EdbDataList, 0)
  435. endDateStr := edbInfo.EndDate //预测指标的结束日期
  436. if isTimeBetween { //如果是时间区间,那么
  437. reqEndDateTime, _ := time.ParseInLocation(utils.FormatDate, endDate, time.Local)
  438. endDateTime, _ := time.ParseInLocation(utils.FormatDate, edbInfo.EndDate, time.Local)
  439. // 如果选择的时间区间结束日期 晚于 当天,那么预测数据截止到当天
  440. if reqEndDateTime.Before(endDateTime) {
  441. endDateStr = endDate
  442. }
  443. }
  444. //predictDataList, err = GetChartPredictEdbInfoDataList(*predictEdbConf, startDate, sourceEdbInfoItem.LatestDate, sourceEdbInfoItem.LatestValue, endDateStr, edbInfo.Frequency)
  445. predictEdbConfDataList := make([]data_manage.PredictEdbConfAndData, 0)
  446. for _, v := range predictEdbConfList {
  447. predictEdbConfDataList = append(predictEdbConfDataList, data_manage.PredictEdbConfAndData{
  448. ConfigId: v.ConfigId,
  449. PredictEdbInfoId: v.PredictEdbInfoId,
  450. SourceEdbInfoId: v.SourceEdbInfoId,
  451. RuleType: v.RuleType,
  452. FixedValue: v.FixedValue,
  453. Value: v.Value,
  454. EndDate: v.EndDate,
  455. ModifyTime: v.ModifyTime,
  456. CreateTime: v.CreateTime,
  457. DataList: make([]*data_manage.EdbDataList, 0),
  458. })
  459. }
  460. var predictMinValue, predictMaxValue float64
  461. predictDataList, predictMinValue, predictMaxValue, err, _ = GetChartPredictEdbInfoDataListByConfList(predictEdbConfDataList, startDate, sourceEdbInfoItem.LatestDate, endDateStr, edbInfo.Frequency, allDataList)
  462. if err != nil {
  463. return
  464. }
  465. dataList = append(dataList, predictDataList...)
  466. if len(predictDataList) > 0 {
  467. // 如果最小值 大于 预测值,那么将预测值作为最小值数据返回
  468. if edbInfo.MinValue > predictMinValue {
  469. edbInfo.MinValue = predictMinValue
  470. }
  471. // 如果最大值 小于 预测值,那么将预测值作为最大值数据返回
  472. if edbInfo.MaxValue < predictMaxValue {
  473. edbInfo.MaxValue = predictMaxValue
  474. }
  475. }
  476. return
  477. }
  478. // GetChartDataList 通过完整的预测数据 进行 季节性图、公历、农历处理
  479. func GetChartDataList(dataList []*data_manage.EdbDataList, chartType int, calendar, latestDateStr, startDate string) (resultDataList interface{}, err error) {
  480. startDateReal := startDate
  481. calendarPreYear := 0
  482. if calendar == "农历" {
  483. newStartDateReal, err := time.Parse(utils.FormatDate, startDateReal)
  484. if err != nil {
  485. fmt.Println("time.Parse:" + err.Error())
  486. }
  487. calendarPreYear = newStartDateReal.Year() - 1
  488. newStartDateReal = newStartDateReal.AddDate(-1, 0, 0)
  489. startDateReal = newStartDateReal.Format(utils.FormatDate)
  490. }
  491. // 曲线图
  492. if chartType == 1 {
  493. resultDataList = dataList
  494. return
  495. }
  496. //实际数据的截止日期
  497. latestDate, tmpErr := time.Parse(utils.FormatDate, latestDateStr)
  498. if tmpErr != nil {
  499. err = errors.New(fmt.Sprint("获取最后实际数据的日期失败,Err:" + tmpErr.Error() + ";LatestDate:" + latestDateStr))
  500. return
  501. }
  502. latestDateYear := latestDate.Year() //实际数据截止年份
  503. if calendar == "农历" {
  504. if len(dataList) <= 0 {
  505. resultDataList = data_manage.EdbDataResult{}
  506. } else {
  507. result, tmpErr := data_manage.AddCalculateQuarterV4(dataList)
  508. if tmpErr != nil {
  509. err = errors.New("获取农历数据失败,Err:" + tmpErr.Error())
  510. return
  511. }
  512. // 处理季节图的截止日期
  513. for k, edbDataItems := range result.List {
  514. var cuttingDataTimestamp int64
  515. // 切割的日期时间字符串
  516. cuttingDataTimeStr := latestDate.AddDate(0, 0, edbDataItems.BetweenDay).Format(utils.FormatDate)
  517. //如果等于最后的实际日期,那么遍历找到该日期对应的时间戳,并将其赋值为 切割时间戳
  518. if edbDataItems.Year >= latestDateYear {
  519. for _, tmpData := range edbDataItems.Items {
  520. if tmpData.DataTime == cuttingDataTimeStr {
  521. cuttingDataTimestamp = tmpData.DataTimestamp
  522. break
  523. }
  524. }
  525. }
  526. edbDataItems.CuttingDataTimestamp = cuttingDataTimestamp
  527. result.List[k] = edbDataItems
  528. }
  529. if result.List[0].Year != calendarPreYear {
  530. itemList := make([]*data_manage.EdbDataList, 0)
  531. items := new(data_manage.EdbDataItems)
  532. //items.Year = calendarPreYear
  533. items.Items = itemList
  534. newResult := new(data_manage.EdbDataResult)
  535. newResult.List = append(newResult.List, items)
  536. newResult.List = append(newResult.List, result.List...)
  537. resultDataList = newResult
  538. } else {
  539. resultDataList = result
  540. }
  541. }
  542. } else {
  543. currentYear := time.Now().Year()
  544. quarterDataList := make([]*data_manage.QuarterData, 0)
  545. quarterMap := make(map[int][]*data_manage.EdbDataList)
  546. var quarterArr []int
  547. for _, v := range dataList {
  548. itemDate, tmpErr := time.Parse(utils.FormatDate, v.DataTime)
  549. if tmpErr != nil {
  550. err = errors.New("季度指标日期转换,Err:" + tmpErr.Error() + ";DataTime:" + v.DataTime)
  551. return
  552. }
  553. year := itemDate.Year()
  554. newItemDate := itemDate.AddDate(currentYear-year, 0, 0)
  555. timestamp := newItemDate.UnixNano() / 1e6
  556. v.DataTimestamp = timestamp
  557. if findVal, ok := quarterMap[year]; !ok {
  558. quarterArr = append(quarterArr, year)
  559. findVal = append(findVal, v)
  560. quarterMap[year] = findVal
  561. } else {
  562. findVal = append(findVal, v)
  563. quarterMap[year] = findVal
  564. }
  565. }
  566. for _, v := range quarterArr {
  567. itemList := quarterMap[v]
  568. quarterItem := new(data_manage.QuarterData)
  569. quarterItem.Year = v
  570. quarterItem.DataList = itemList
  571. //如果等于最后的实际日期,那么将切割时间戳记录
  572. if v == latestDateYear {
  573. var cuttingDataTimestamp int64
  574. for _, tmpData := range itemList {
  575. if tmpData.DataTime == latestDateStr {
  576. cuttingDataTimestamp = tmpData.DataTimestamp
  577. break
  578. }
  579. }
  580. quarterItem.CuttingDataTimestamp = cuttingDataTimestamp
  581. } else if v > latestDateYear {
  582. //如果大于最后的实际日期,那么第一个点就是切割的时间戳
  583. if len(itemList) > 0 {
  584. quarterItem.CuttingDataTimestamp = itemList[0].DataTimestamp - 100
  585. }
  586. }
  587. quarterDataList = append(quarterDataList, quarterItem)
  588. }
  589. resultDataList = quarterDataList
  590. }
  591. return
  592. }
  593. // GetPredictCalculateDataListByPredictEdbInfo 根据预测运算指标信息获取预测指标的数据
  594. func GetPredictCalculateDataListByPredictEdbInfo(edbInfo *data_manage.EdbInfo, startDate, endDate string) (dataList []*data_manage.EdbDataList, sourceEdbInfoItem *data_manage.EdbInfo, predictEdbConf *data_manage.PredictEdbConf, err error, errMsg string) {
  595. dataList, err = data_manage.GetEdbDataList(edbInfo.Source, edbInfo.EdbInfoId, startDate, endDate)
  596. return
  597. }