calculate.go 3.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110
  1. package utils
  2. import (
  3. "github.com/shopspring/decimal"
  4. "math"
  5. )
  6. // Series is a container for a series of data
  7. type Series []Coordinate
  8. // Coordinate holds the data in a series
  9. type Coordinate struct {
  10. X, Y float64
  11. }
  12. // GetLinearResult 生成线性方程式
  13. func GetLinearResult(s []Coordinate) (gradient, intercept float64) {
  14. if len(s) <= 1 {
  15. return
  16. }
  17. // Placeholder for the math to be done
  18. var sum [5]float64
  19. // Loop over data keeping index in place
  20. i := 0
  21. for ; i < len(s); i++ {
  22. sum[0] += s[i].X
  23. sum[1] += s[i].Y
  24. sum[2] += s[i].X * s[i].X
  25. sum[3] += s[i].X * s[i].Y
  26. sum[4] += s[i].Y * s[i].Y
  27. }
  28. // Find gradient and intercept
  29. f := float64(i)
  30. gradient = (f*sum[3] - sum[0]*sum[1]) / (f*sum[2] - sum[0]*sum[0])
  31. intercept = (sum[1] / f) - (gradient * sum[0] / f)
  32. //fmt.Println("gradient:", gradient, ";intercept:", intercept)
  33. // Create the new regression series
  34. //for j := 0; j < len(s); j++ {
  35. // regressions = append(regressions, Coordinate{
  36. // X: s[j].X,
  37. // Y: s[j].X*gradient + intercept,
  38. // })
  39. //}
  40. return
  41. }
  42. // ComputeCorrelation 通过一组数据获取相关系数R
  43. // 计算步骤
  44. // 1.分别计算两个序列的平均值Mx和My
  45. // 2.分别计算两个序列的标准偏差SDx和SDy => √{1/(n-1)*SUM[(Xi-Mx)²]}
  46. // 3.计算相关系数 => SUM[(Xi-Mx)*(Yi-My)]/[(N-1)(SDx*SDy)]
  47. func ComputeCorrelation(sList []Coordinate) (r float64) {
  48. var xBar, yBar float64
  49. lenSList := len(sList)
  50. // 必须两组数据及两组以上的数据才能计算
  51. if lenSList < 2 {
  52. return
  53. }
  54. decimalX := decimal.NewFromFloat(0)
  55. decimalY := decimal.NewFromFloat(0)
  56. // 计算两组数据X、Y的平均值
  57. for _, coordinate := range sList {
  58. decimalX = decimalX.Add(decimal.NewFromFloat(coordinate.X))
  59. decimalY = decimalY.Add(decimal.NewFromFloat(coordinate.Y))
  60. }
  61. xBar, _ = decimalX.Div(decimal.NewFromInt(int64(lenSList))).Round(4).Float64()
  62. yBar, _ = decimalY.Div(decimal.NewFromInt(int64(lenSList))).Round(4).Float64()
  63. //fmt.Println(xBar)
  64. //fmt.Println(yBar)
  65. varXDeci := decimal.NewFromFloat(0)
  66. varYDeci := decimal.NewFromFloat(0)
  67. ssrDeci := decimal.NewFromFloat(0)
  68. for _, coordinate := range sList {
  69. // 分别计算X、Y的实际数据与平均值的差值
  70. diffXXbarDeci := decimal.NewFromFloat(coordinate.X).Sub(decimal.NewFromFloat(xBar))
  71. diffYYbarDeci := decimal.NewFromFloat(coordinate.Y).Sub(decimal.NewFromFloat(yBar))
  72. ssrDeci = ssrDeci.Add(diffXXbarDeci.Mul(diffYYbarDeci))
  73. //fmt.Println("i:", i, ";diffXXbar:", diffXXbarDeci.String(), ";diffYYbar:", diffYYbarDeci.String(), ";ssr:", ssrDeci.String())
  74. varXDeci = varXDeci.Add(diffXXbarDeci.Mul(diffXXbarDeci))
  75. varYDeci = varYDeci.Add(diffYYbarDeci.Mul(diffYYbarDeci))
  76. //varY += diffYYbar ** 2
  77. }
  78. sqrtVal, _ := varXDeci.Mul(varYDeci).Round(4).Float64()
  79. //fmt.Println("sqrtVal:", sqrtVal)
  80. sst := math.Sqrt(sqrtVal) // 平方根
  81. //fmt.Println("sst:", sst)
  82. // 如果计算出来的平方根是0,那么就直接返回,因为0不能作为除数
  83. if sst == 0 {
  84. return
  85. }
  86. r, _ = ssrDeci.Div(decimal.NewFromFloat(sst)).Round(4).Float64()
  87. return
  88. }
  89. // CalculationDecisive 通过一组数据获取决定系数R2
  90. func CalculationDecisive(sList []Coordinate) (r2 float64) {
  91. r := ComputeCorrelation(sList)
  92. r2, _ = decimal.NewFromFloat(r).Mul(decimal.NewFromFloat(r)).Round(4).Float64()
  93. return
  94. }