predict_edb.go 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324
  1. package logic
  2. import (
  3. "errors"
  4. "eta/eta_index_lib/models"
  5. "eta/eta_index_lib/utils"
  6. "fmt"
  7. "strconv"
  8. "strings"
  9. "time"
  10. )
  11. // AddPredictEdbInfo 新增预测指标
  12. func AddPredictEdbInfo(sourceEdbInfoId, classifyId int, edbName, dataDateType string, endDateType int, ruleList []models.RuleConfig, minValue, maxValue float64, sysUserId int, sysUserName, lang string) (edbInfo *models.EdbInfo, err error, errMsg string) {
  13. var sourceEdbInfo *models.EdbInfo
  14. // 来源指标信息校验
  15. {
  16. sourceEdbInfo, err = models.GetEdbInfoById(sourceEdbInfoId)
  17. if err != nil && !utils.IsErrNoRow(err) {
  18. errMsg = "新增失败"
  19. err = errors.New("获取来源指标失败,Err:" + err.Error())
  20. return
  21. }
  22. if sourceEdbInfo == nil {
  23. errMsg = "找不到该来源指标"
  24. err = errors.New(errMsg)
  25. return
  26. }
  27. //必须是普通的指标
  28. if sourceEdbInfo.EdbInfoType != 0 {
  29. errMsg = "来源指标异常,不是普通的指标"
  30. err = errors.New(errMsg)
  31. return
  32. }
  33. //if !utils.InArrayByStr([]string{"日度", "周度", "月度", "年度"}, sourceEdbInfo.Frequency) {
  34. // errMsg = "预测指标只支持选择日度、周度、月度、年度的指标"
  35. // err = errors.New(errMsg)
  36. // return
  37. //}
  38. }
  39. var classifyInfo *models.EdbClassify
  40. // 来源分类信息校验
  41. {
  42. classifyInfo, err = models.GetEdbClassifyById(classifyId)
  43. if err != nil && !utils.IsErrNoRow(err) {
  44. errMsg = "新增失败"
  45. err = errors.New("获取预测指标分类失败,Err:" + err.Error())
  46. return
  47. }
  48. if classifyInfo == nil {
  49. errMsg = "找不到该预测指标分类"
  50. err = errors.New(errMsg)
  51. return
  52. }
  53. //必须是预测指标分类
  54. if classifyInfo.ClassifyType != 1 {
  55. errMsg = "预测指标分类异常,不是预测指标分类"
  56. err = errors.New(errMsg)
  57. return
  58. }
  59. }
  60. edbName = strings.Trim(edbName, " ")
  61. edbCode := sourceEdbInfo.EdbCode + "_" + time.Now().Format(utils.FormatShortDateTimeUnSpace)
  62. // 根据指标名称和指标ID校验库中是否还存在其他同名指标
  63. existEdbName, err := CheckExistByEdbNameAndEdbInfoId(utils.PREDICT_EDB_INFO_TYPE, 0, edbName, lang)
  64. if err != nil {
  65. errMsg = "判断指标名称是否存在失败"
  66. err = errors.New("判断指标名称是否存在失败,Err:" + err.Error())
  67. return
  68. }
  69. if existEdbName {
  70. errMsg = "指标名称已存在,请重新填写"
  71. err = errors.New(errMsg)
  72. return
  73. }
  74. timestamp := strconv.FormatInt(time.Now().UnixNano(), 10)
  75. if dataDateType == `` {
  76. dataDateType = `自然日`
  77. }
  78. edbInfo = &models.EdbInfo{
  79. //EdbInfoId: 0,
  80. EdbInfoType: 1,
  81. SourceName: "预测指标",
  82. Source: utils.DATA_SOURCE_PREDICT,
  83. EdbCode: edbCode,
  84. EdbName: edbName,
  85. EdbNameSource: edbName,
  86. Frequency: sourceEdbInfo.Frequency,
  87. Unit: sourceEdbInfo.Unit,
  88. StartDate: sourceEdbInfo.StartDate,
  89. ClassifyId: classifyId,
  90. SysUserId: sysUserId,
  91. SysUserRealName: sysUserName,
  92. UniqueCode: utils.MD5(utils.DATA_PREFIX + "_" + timestamp),
  93. CreateTime: time.Now(),
  94. ModifyTime: time.Now(),
  95. MinValue: minValue,
  96. MaxValue: maxValue,
  97. CalculateFormula: sourceEdbInfo.CalculateFormula,
  98. EdbType: 1,
  99. //Sort: sourceEdbInfo.,
  100. LatestDate: sourceEdbInfo.LatestDate,
  101. LatestValue: sourceEdbInfo.LatestValue,
  102. MoveType: sourceEdbInfo.MoveType,
  103. MoveFrequency: sourceEdbInfo.MoveFrequency,
  104. NoUpdate: sourceEdbInfo.NoUpdate,
  105. ServerUrl: "",
  106. EdbNameEn: edbName,
  107. UnitEn: sourceEdbInfo.UnitEn,
  108. DataDateType: dataDateType,
  109. Sort: models.GetAddEdbMaxSortByClassifyId(classifyId, utils.PREDICT_EDB_INFO_TYPE),
  110. EndDateType: endDateType,
  111. }
  112. // 关联关系表
  113. calculateMappingList := make([]*models.EdbInfoCalculateMapping, 0)
  114. fromEdbMap := make(map[int]int)
  115. // 源指标关联关系表
  116. calculateMappingItem := &models.EdbInfoCalculateMapping{
  117. //EdbInfoCalculateMappingId: 0,
  118. //EdbInfoId: 0,
  119. Source: edbInfo.Source,
  120. SourceName: edbInfo.SourceName,
  121. EdbCode: edbInfo.EdbCode,
  122. FromEdbInfoId: sourceEdbInfo.EdbInfoId,
  123. FromEdbCode: sourceEdbInfo.EdbCode,
  124. FromEdbName: sourceEdbInfo.EdbName,
  125. FromSource: sourceEdbInfo.Source,
  126. FromSourceName: sourceEdbInfo.SourceName,
  127. //FromTag: "",
  128. Sort: 1,
  129. CreateTime: time.Now(),
  130. ModifyTime: time.Now(),
  131. }
  132. fromEdbMap[sourceEdbInfoId] = sourceEdbInfoId
  133. calculateMappingList = append(calculateMappingList, calculateMappingItem)
  134. // 动态环差 计算列表
  135. calculateRuleMap := make(map[int]models.CalculateRule, 0)
  136. // 预测指标配置
  137. predictEdbConfList := make([]*models.PredictEdbConf, 0)
  138. var ruleEndDate time.Time
  139. for ruleIndex, v := range ruleList {
  140. if endDateType == 0 {
  141. // 预测指标配置
  142. ruleEndDate, err = time.ParseInLocation(utils.FormatDate, v.EndDate, time.Local)
  143. if err != nil {
  144. errMsg = "规则配置的截止日期异常,请重新填写"
  145. err = errors.New(errMsg)
  146. return
  147. }
  148. } else {
  149. if v.EndNum <= 0 {
  150. errMsg = "截止期数不正确,请输入大于等于1的整数"
  151. err = errors.New(errMsg)
  152. return
  153. }
  154. }
  155. //1:最新,2:固定值,3:同比,4:同差,5:环比,6:环差,7:N期移动均值,8:N期段线性外推值,9:动态环差,10:根据 给定终值后插值 规则获取预测数据,11:根据 季节性 规则获取预测数据,12:根据 移动平均同比 规则获取预测数据
  156. // 环比、环差、动态环差、季节性、移动平均同比不支持年度
  157. if sourceEdbInfo.Frequency == "年度" && utils.InArrayByInt([]int{5, 6, 11, 12}, v.RuleType) {
  158. errMsg = "环比、环差、动态环差、季节性、移动平均同比不支持年度指标"
  159. err = errors.New(errMsg)
  160. return
  161. }
  162. if v.RuleType == 16 && endDateType == 1 {
  163. errMsg = "年度值倒推不支持截止期数"
  164. err = errors.New(errMsg)
  165. return
  166. }
  167. switch v.RuleType {
  168. case 8: //N期段线性外推值
  169. valInt, tmpErr := strconv.Atoi(v.Value)
  170. if tmpErr != nil {
  171. errMsg = "N期段线性外推值的N值异常"
  172. err = errors.New(errMsg)
  173. return
  174. }
  175. if valInt <= 1 {
  176. errMsg = "N期段线性外推值的N值必须大于1"
  177. err = errors.New(errMsg)
  178. return
  179. }
  180. case 9: //9:动态环差
  181. if v.Value == "" {
  182. errMsg = "请填写计算规则"
  183. err = errors.New(errMsg)
  184. return
  185. }
  186. formula := v.Value
  187. formula = strings.Replace(formula, "(", "(", -1)
  188. formula = strings.Replace(formula, ")", ")", -1)
  189. formula = strings.Replace(formula, ",", ",", -1)
  190. formula = strings.Replace(formula, "。", ".", -1)
  191. formula = strings.Replace(formula, "%", "*0.01", -1)
  192. v.Value = formula
  193. //检验公式
  194. var formulaStr string
  195. var edbInfoIdBytes []string
  196. for _, tmpEdbInfoId := range v.EdbInfoIdArr {
  197. formulaStr += tmpEdbInfoId.FromTag + ","
  198. edbInfoIdBytes = append(edbInfoIdBytes, tmpEdbInfoId.FromTag)
  199. }
  200. formulaSlice, tErr := utils.CheckFormulaJson(formula)
  201. if tErr != nil {
  202. errMsg = "公式格式错误,请重新填写"
  203. err = errors.New(errMsg)
  204. return
  205. }
  206. for _, fm := range formulaSlice {
  207. formulaMap, e := utils.CheckFormula(fm)
  208. if e != nil {
  209. err = fmt.Errorf("公式错误,请重新填写")
  210. return
  211. }
  212. for _, f := range formulaMap {
  213. if !strings.Contains(formulaStr, f) {
  214. errMsg = "公式错误,请重新填写"
  215. err = errors.New(errMsg)
  216. return
  217. }
  218. }
  219. }
  220. //关联的指标信息
  221. edbInfoList := make([]*models.EdbInfo, 0)
  222. // 动态环差规则 关系表
  223. trendsMappingList := make([]*models.PredictEdbConfCalculateMapping, 0)
  224. for k, tmpEdbInfoId := range v.EdbInfoIdArr {
  225. fromEdbInfo, tmpErr := models.GetEdbInfoById(tmpEdbInfoId.EdbInfoId)
  226. if tmpErr != nil {
  227. err = tmpErr
  228. if err.Error() == utils.ErrNoRow() {
  229. errMsg = "指标 " + strconv.Itoa(tmpEdbInfoId.EdbInfoId) + " 不存在"
  230. err = errors.New(errMsg)
  231. return
  232. }
  233. errMsg = "获取指标失败:Err:" + err.Error()
  234. err = errors.New(errMsg)
  235. return
  236. }
  237. edbInfoList = append(edbInfoList, fromEdbInfo)
  238. //总的 预测指标与所有相关联指标的关系表(不仅仅该条规则)
  239. {
  240. if _, ok := fromEdbMap[tmpEdbInfoId.EdbInfoId]; !ok {
  241. fromEdbMap[tmpEdbInfoId.EdbInfoId] = tmpEdbInfoId.EdbInfoId
  242. calculateMappingItem := &models.EdbInfoCalculateMapping{
  243. EdbInfoCalculateMappingId: 0,
  244. EdbInfoId: 0,
  245. Source: edbInfo.Source,
  246. SourceName: edbInfo.SourceName,
  247. EdbCode: "",
  248. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  249. FromEdbCode: fromEdbInfo.EdbCode,
  250. FromEdbName: fromEdbInfo.EdbName,
  251. FromSource: fromEdbInfo.Source,
  252. FromSourceName: fromEdbInfo.SourceName,
  253. //FromTag: tmpEdbInfoId.FromTag,
  254. Sort: k + 1,
  255. CreateTime: time.Now(),
  256. ModifyTime: time.Now(),
  257. }
  258. calculateMappingList = append(calculateMappingList, calculateMappingItem)
  259. }
  260. }
  261. // 动态环差规则 关系表
  262. tmpPredictEdbConfCalculateMapping := &models.PredictEdbConfCalculateMapping{
  263. //PredictEdbConfCalculateMappingId: 0,
  264. EdbInfoId: 0,
  265. ConfigId: 0,
  266. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  267. FromEdbCode: fromEdbInfo.EdbCode,
  268. FromEdbName: fromEdbInfo.EdbName,
  269. FromSource: fromEdbInfo.Source,
  270. FromSourceName: fromEdbInfo.SourceName,
  271. FromTag: tmpEdbInfoId.FromTag,
  272. Sort: k + 1,
  273. CreateTime: time.Now(),
  274. ModifyTime: time.Now(),
  275. }
  276. trendsMappingList = append(trendsMappingList, tmpPredictEdbConfCalculateMapping)
  277. }
  278. for _, f := range formulaSlice {
  279. formulaMap, e := utils.CheckFormula(f)
  280. if e != nil {
  281. err = fmt.Errorf("公式错误,请重新填写")
  282. return
  283. }
  284. //预先计算,判断公式是否正常
  285. ok, _ := models.CheckFormula2(edbInfoList, formulaMap, f, edbInfoIdBytes)
  286. if !ok {
  287. errMsg = "生成计算指标失败,请使用正确的计算公式"
  288. err = errors.New(errMsg)
  289. return
  290. }
  291. }
  292. calculateRuleMap[ruleIndex] = models.CalculateRule{
  293. TrendsCalculateMappingList: trendsMappingList,
  294. EdbInfoList: edbInfoList,
  295. EdbInfoIdBytes: edbInfoIdBytes,
  296. Formula: formula,
  297. RuleType: v.RuleType,
  298. EndDate: v.EndDate,
  299. EdbInfoIdArr: v.EdbInfoIdArr,
  300. }
  301. case 14: //14:根据 一元线性拟合 规则获取预测数据
  302. if v.Value == "" {
  303. errMsg = "请填写一元线性拟合规则"
  304. err = errors.New(errMsg)
  305. return
  306. }
  307. //关联的指标信息
  308. edbInfoList := make([]*models.EdbInfo, 0)
  309. // 动态环差规则 关系表
  310. trendsMappingList := make([]*models.PredictEdbConfCalculateMapping, 0)
  311. for k, tmpEdbInfoId := range v.EdbInfoIdArr {
  312. fromEdbInfo, tmpErr := models.GetEdbInfoById(tmpEdbInfoId.EdbInfoId)
  313. if tmpErr != nil {
  314. err = tmpErr
  315. if err.Error() == utils.ErrNoRow() {
  316. errMsg = "指标 " + strconv.Itoa(tmpEdbInfoId.EdbInfoId) + " 不存在"
  317. err = errors.New(errMsg)
  318. return
  319. }
  320. errMsg = "获取指标失败:Err:" + err.Error()
  321. err = errors.New(errMsg)
  322. return
  323. }
  324. edbInfoList = append(edbInfoList, fromEdbInfo)
  325. //总的 预测指标与所有相关联指标的关系表(不仅仅该条规则)
  326. {
  327. if _, ok := fromEdbMap[tmpEdbInfoId.EdbInfoId]; !ok {
  328. fromEdbMap[tmpEdbInfoId.EdbInfoId] = tmpEdbInfoId.EdbInfoId
  329. tmpCalculateMappingItem := &models.EdbInfoCalculateMapping{
  330. EdbInfoCalculateMappingId: 0,
  331. EdbInfoId: 0,
  332. Source: edbInfo.Source,
  333. SourceName: edbInfo.SourceName,
  334. EdbCode: "",
  335. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  336. FromEdbCode: fromEdbInfo.EdbCode,
  337. FromEdbName: fromEdbInfo.EdbName,
  338. FromSource: fromEdbInfo.Source,
  339. FromSourceName: fromEdbInfo.SourceName,
  340. //FromTag: tmpEdbInfoId.FromTag,
  341. Sort: k + 1,
  342. CreateTime: time.Now(),
  343. ModifyTime: time.Now(),
  344. }
  345. calculateMappingList = append(calculateMappingList, tmpCalculateMappingItem)
  346. }
  347. }
  348. // 动态环差规则 关系表
  349. tmpPredictEdbConfCalculateMapping := &models.PredictEdbConfCalculateMapping{
  350. //PredictEdbConfCalculateMappingId: 0,
  351. EdbInfoId: 0,
  352. ConfigId: 0,
  353. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  354. FromEdbCode: fromEdbInfo.EdbCode,
  355. FromEdbName: fromEdbInfo.EdbName,
  356. FromSource: fromEdbInfo.Source,
  357. FromSourceName: fromEdbInfo.SourceName,
  358. FromTag: tmpEdbInfoId.FromTag,
  359. Sort: k + 1,
  360. CreateTime: time.Now(),
  361. ModifyTime: time.Now(),
  362. }
  363. trendsMappingList = append(trendsMappingList, tmpPredictEdbConfCalculateMapping)
  364. }
  365. calculateRuleMap[ruleIndex] = models.CalculateRule{
  366. TrendsCalculateMappingList: trendsMappingList,
  367. EdbInfoList: edbInfoList,
  368. //EdbInfoIdBytes: edbInfoIdBytes,
  369. //Formula: formula,
  370. RuleType: v.RuleType,
  371. EndDate: v.EndDate,
  372. EdbInfoIdArr: v.EdbInfoIdArr,
  373. }
  374. case 17, 18:
  375. //关联的指标信息
  376. edbInfoList := make([]*models.EdbInfo, 0)
  377. edbInfoId, parseErr := strconv.Atoi(v.Value)
  378. if parseErr != nil {
  379. errMsg = "请填写正确的指标id"
  380. err = errors.New(errMsg)
  381. return
  382. }
  383. fromEdbInfo, tmpErr := models.GetEdbInfoById(edbInfoId)
  384. if tmpErr != nil {
  385. err = tmpErr
  386. if err.Error() == utils.ErrNoRow() {
  387. errMsg = "指标 " + strconv.Itoa(edbInfoId) + " 不存在"
  388. err = errors.New(errMsg)
  389. return
  390. }
  391. errMsg = "获取指标失败:Err:" + err.Error()
  392. err = errors.New(errMsg)
  393. return
  394. }
  395. edbInfoList = append(edbInfoList, fromEdbInfo)
  396. //总的 预测指标与所有相关联指标的关系表(不仅仅该条规则)
  397. fromEdbMap[edbInfoId] = edbInfoId
  398. calculateMappingItem = &models.EdbInfoCalculateMapping{
  399. EdbInfoCalculateMappingId: 0,
  400. EdbInfoId: 0,
  401. Source: edbInfo.Source,
  402. SourceName: edbInfo.SourceName,
  403. EdbCode: "",
  404. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  405. FromEdbCode: fromEdbInfo.EdbCode,
  406. FromEdbName: fromEdbInfo.EdbName,
  407. FromSource: fromEdbInfo.Source,
  408. FromSourceName: fromEdbInfo.SourceName,
  409. //FromTag: tmpEdbInfoId.FromTag,
  410. Sort: 1,
  411. CreateTime: time.Now(),
  412. ModifyTime: time.Now(),
  413. }
  414. calculateMappingList = append(calculateMappingList, calculateMappingItem)
  415. calculateRuleMap[ruleIndex] = models.CalculateRule{
  416. EdbInfoList: edbInfoList,
  417. RuleType: v.RuleType,
  418. EndDate: v.EndDate,
  419. EdbInfoIdArr: v.EdbInfoIdArr,
  420. }
  421. }
  422. tmpPredictEdbConf := &models.PredictEdbConf{
  423. PredictEdbInfoId: 0,
  424. SourceEdbInfoId: sourceEdbInfoId,
  425. RuleType: v.RuleType,
  426. //FixedValue: v.Value,
  427. Value: v.Value,
  428. //EndDate: ruleEndDate,
  429. ModifyTime: time.Now(),
  430. CreateTime: time.Now(),
  431. EndNum: v.EndNum,
  432. }
  433. if endDateType == 0 {
  434. tmpPredictEdbConf.EndDate = ruleEndDate
  435. }
  436. //todo 指标最终的截止日期的更新
  437. edbInfo.EndDate = v.EndDate
  438. predictEdbConfList = append(predictEdbConfList, tmpPredictEdbConf)
  439. }
  440. err, errMsg = models.AddPredictEdb(edbInfo, calculateMappingList, predictEdbConfList, calculateRuleMap)
  441. return
  442. }
  443. // EditPredictEdbInfo 编辑预测指标
  444. func EditPredictEdbInfo(edbInfoId, classifyId int, edbName, dataDateType string, endDateType int, ruleList []models.RuleConfig, minValue, maxValue float64, lang string) (edbInfo *models.EdbInfo, err error, errMsg string) {
  445. // 指标信息校验
  446. {
  447. edbInfo, err = models.GetEdbInfoById(edbInfoId)
  448. if err != nil && !utils.IsErrNoRow(err) {
  449. errMsg = "修改失败"
  450. err = errors.New("获取预测指标失败,Err:" + err.Error())
  451. return
  452. }
  453. if edbInfo == nil {
  454. errMsg = "找不到该预测指标"
  455. err = errors.New(errMsg)
  456. return
  457. }
  458. //必须是普通的指标
  459. if edbInfo.EdbInfoType != 1 {
  460. errMsg = "指标异常,不是预测指标"
  461. err = errors.New(errMsg)
  462. return
  463. }
  464. }
  465. var predictEdbConf *models.PredictEdbConf
  466. // 指标配置信息校验
  467. {
  468. // 查找该预测指标配置
  469. predictEdbConfList, tmpErr := models.GetPredictEdbConfListById(edbInfo.EdbInfoId)
  470. if tmpErr != nil && !utils.IsErrNoRow(tmpErr) {
  471. errMsg = "修改失败"
  472. err = errors.New("获取预测指标配置信息失败,Err:" + tmpErr.Error())
  473. return
  474. }
  475. if len(predictEdbConfList) == 0 {
  476. errMsg = "找不到该预测指标配置"
  477. err = errors.New(errMsg)
  478. return
  479. }
  480. predictEdbConf = predictEdbConfList[0]
  481. }
  482. // 根据指标名称和指标ID校验库中是否还存在其他同名指标
  483. existEdbName, err := CheckExistByEdbNameAndEdbInfoId(utils.PREDICT_EDB_INFO_TYPE, edbInfoId, edbName, lang)
  484. if err != nil {
  485. errMsg = "判断指标名称是否存在失败"
  486. err = errors.New("判断指标名称是否存在失败,Err:" + err.Error())
  487. return
  488. }
  489. if existEdbName {
  490. errMsg = "指标名称已存在,请重新填写"
  491. err = errors.New(errMsg)
  492. return
  493. }
  494. if dataDateType == `` {
  495. dataDateType = `自然日`
  496. }
  497. switch lang {
  498. case utils.EnLangVersion:
  499. edbInfo.EdbNameEn = edbName
  500. default:
  501. edbInfo.EdbName = edbName
  502. }
  503. edbInfo.EdbNameSource = edbName
  504. edbInfo.ClassifyId = classifyId
  505. edbInfo.MinValue = minValue
  506. edbInfo.MaxValue = maxValue
  507. edbInfo.DataDateType = dataDateType
  508. edbInfo.ModifyTime = time.Now()
  509. edbInfo.EndDateType = endDateType
  510. updateEdbInfoCol := []string{"EdbName", "EdbNameEn", "EdbNameSource", "ClassifyId", "EndDate", "MinValue", "MaxValue", "DataDateType", "ModifyTime", "EndDateType"}
  511. var sourceEdbInfo *models.EdbInfo
  512. // 来源指标信息校验
  513. {
  514. sourceEdbInfo, err = models.GetEdbInfoById(predictEdbConf.SourceEdbInfoId)
  515. if err != nil && !utils.IsErrNoRow(err) {
  516. errMsg = "新增失败"
  517. err = errors.New("获取来源指标失败,Err:" + err.Error())
  518. return
  519. }
  520. if sourceEdbInfo == nil {
  521. errMsg = "找不到该来源指标"
  522. err = errors.New(errMsg)
  523. return
  524. }
  525. //必须是普通的指标
  526. if sourceEdbInfo.EdbInfoType != 0 {
  527. errMsg = "来源指标异常,不是普通的指标"
  528. err = errors.New(errMsg)
  529. return
  530. }
  531. //if !utils.InArrayByStr([]string{"日度", "周度", "月度", "年度"}, sourceEdbInfo.Frequency) {
  532. // errMsg = "预测指标只支持选择日度、周度、月度、年度的指标"
  533. // err = errors.New(errMsg)
  534. // return
  535. //}
  536. }
  537. // 预测指标配置
  538. // 关联关系表
  539. calculateMappingList := make([]*models.EdbInfoCalculateMapping, 0)
  540. fromEdbMap := make(map[int]int)
  541. // 源指标关联关系表
  542. calculateMappingItem := &models.EdbInfoCalculateMapping{
  543. //EdbInfoCalculateMappingId: 0,
  544. EdbInfoId: edbInfoId,
  545. Source: edbInfo.Source,
  546. SourceName: edbInfo.SourceName,
  547. EdbCode: edbInfo.EdbCode,
  548. FromEdbInfoId: sourceEdbInfo.EdbInfoId,
  549. FromEdbCode: sourceEdbInfo.EdbCode,
  550. FromEdbName: sourceEdbInfo.EdbName,
  551. FromSource: sourceEdbInfo.Source,
  552. FromSourceName: sourceEdbInfo.SourceName,
  553. //FromTag: "",
  554. Sort: 1,
  555. CreateTime: time.Now(),
  556. ModifyTime: time.Now(),
  557. }
  558. fromEdbMap[sourceEdbInfo.EdbInfoId] = sourceEdbInfo.EdbInfoId
  559. calculateMappingList = append(calculateMappingList, calculateMappingItem)
  560. // 动态环差 计算列表
  561. calculateRuleMap := make(map[int]models.CalculateRule, 0)
  562. // 预测指标配置
  563. predictEdbConfList := make([]*models.PredictEdbConf, 0)
  564. for ruleIndex, v := range ruleList {
  565. var ruleEndDate time.Time
  566. if endDateType == 0 {
  567. // 预测指标配置
  568. ruleEndDate, err = time.ParseInLocation(utils.FormatDate, v.EndDate, time.Local)
  569. if err != nil {
  570. errMsg = "规则配置的截止日期异常,请重新填写"
  571. err = errors.New(errMsg)
  572. return
  573. }
  574. } else {
  575. if v.EndNum <= 0 {
  576. errMsg = "截止期数不正确,请输入大于等于1的整数"
  577. err = errors.New(errMsg)
  578. return
  579. }
  580. }
  581. //1:最新,2:固定值,3:同比,4:同差,5:环比,6:环差,7:N期移动均值,8:N期段线性外推值,9:动态环差,10:根据 给定终值后插值 规则获取预测数据,11:根据 季节性 规则获取预测数据,12:根据 移动平均同比 规则获取预测数据
  582. // 环比、环差、动态环差、季节性、移动平均同比不支持年度
  583. if sourceEdbInfo.Frequency == "年度" && utils.InArrayByInt([]int{5, 6, 11, 12}, v.RuleType) {
  584. errMsg = "环比、环差、动态环差、季节性、移动平均同比不支持年度指标"
  585. err = errors.New(errMsg)
  586. return
  587. }
  588. if v.RuleType == 16 && endDateType == 1 {
  589. errMsg = "年度值倒推不支持截止期数"
  590. err = errors.New(errMsg)
  591. return
  592. }
  593. switch v.RuleType {
  594. case 8: //N期段线性外推值
  595. valInt, tmpErr := strconv.Atoi(v.Value)
  596. if tmpErr != nil {
  597. errMsg = "N期段线性外推值的N值异常"
  598. err = errors.New(errMsg)
  599. return
  600. }
  601. if valInt <= 1 {
  602. errMsg = "N期段线性外推值的N值必须大于1"
  603. err = errors.New(errMsg)
  604. return
  605. }
  606. case 9: //9:动态环差
  607. if v.Value == "" {
  608. errMsg = "请填写计算规则"
  609. err = errors.New(errMsg)
  610. return
  611. }
  612. formula := v.Value
  613. formula = strings.Replace(formula, "(", "(", -1)
  614. formula = strings.Replace(formula, ")", ")", -1)
  615. formula = strings.Replace(formula, ",", ",", -1)
  616. formula = strings.Replace(formula, "。", ".", -1)
  617. formula = strings.Replace(formula, "%", "*0.01", -1)
  618. v.Value = formula
  619. //检验公式
  620. var formulaStr string
  621. var edbInfoIdBytes []string
  622. for _, tmpEdbInfoId := range v.EdbInfoIdArr {
  623. formulaStr += tmpEdbInfoId.FromTag + ","
  624. edbInfoIdBytes = append(edbInfoIdBytes, tmpEdbInfoId.FromTag)
  625. }
  626. formulaSlice, tErr := utils.CheckFormulaJson(formula)
  627. if tErr != nil {
  628. errMsg = "公式格式错误,请重新填写"
  629. err = errors.New(errMsg)
  630. return
  631. }
  632. for _, fm := range formulaSlice {
  633. formulaMap, e := utils.CheckFormula(fm)
  634. if e != nil {
  635. err = fmt.Errorf("公式错误,请重新填写")
  636. return
  637. }
  638. for _, f := range formulaMap {
  639. if !strings.Contains(formulaStr, f) {
  640. errMsg = "公式错误,请重新填写"
  641. err = errors.New(errMsg)
  642. return
  643. }
  644. }
  645. }
  646. //关联的指标信息
  647. edbInfoList := make([]*models.EdbInfo, 0)
  648. // 动态环差规则 关系表
  649. trendsMappingList := make([]*models.PredictEdbConfCalculateMapping, 0)
  650. for k, tmpEdbInfoId := range v.EdbInfoIdArr {
  651. fromEdbInfo, tmpErr := models.GetEdbInfoById(tmpEdbInfoId.EdbInfoId)
  652. if tmpErr != nil {
  653. err = tmpErr
  654. if err.Error() == utils.ErrNoRow() {
  655. errMsg = "指标 " + strconv.Itoa(tmpEdbInfoId.EdbInfoId) + " 不存在"
  656. err = errors.New(errMsg)
  657. return
  658. }
  659. errMsg = "获取指标失败:Err:" + err.Error()
  660. err = errors.New(errMsg)
  661. return
  662. }
  663. edbInfoList = append(edbInfoList, fromEdbInfo)
  664. //总的 预测指标与所有相关联指标的关系表(不仅仅该条规则)
  665. {
  666. if _, ok := fromEdbMap[tmpEdbInfoId.EdbInfoId]; !ok {
  667. fromEdbMap[tmpEdbInfoId.EdbInfoId] = tmpEdbInfoId.EdbInfoId
  668. calculateMappingItem := &models.EdbInfoCalculateMapping{
  669. EdbInfoCalculateMappingId: 0,
  670. EdbInfoId: edbInfoId,
  671. Source: utils.DATA_SOURCE_CALCULATE,
  672. SourceName: "指标运算",
  673. EdbCode: "",
  674. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  675. FromEdbCode: fromEdbInfo.EdbCode,
  676. FromEdbName: fromEdbInfo.EdbName,
  677. FromSource: fromEdbInfo.Source,
  678. FromSourceName: fromEdbInfo.SourceName,
  679. //FromTag: tmpEdbInfoId.FromTag,
  680. Sort: k + 1,
  681. CreateTime: time.Now(),
  682. ModifyTime: time.Now(),
  683. }
  684. calculateMappingList = append(calculateMappingList, calculateMappingItem)
  685. }
  686. }
  687. // 动态环差规则 关系表
  688. tmpPredictEdbConfCalculateMapping := &models.PredictEdbConfCalculateMapping{
  689. //PredictEdbConfCalculateMappingId: 0,
  690. EdbInfoId: edbInfoId,
  691. ConfigId: 0,
  692. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  693. FromEdbCode: fromEdbInfo.EdbCode,
  694. FromEdbName: fromEdbInfo.EdbName,
  695. FromSource: fromEdbInfo.Source,
  696. FromSourceName: fromEdbInfo.SourceName,
  697. FromTag: tmpEdbInfoId.FromTag,
  698. Sort: k + 1,
  699. CreateTime: time.Now(),
  700. ModifyTime: time.Now(),
  701. }
  702. trendsMappingList = append(trendsMappingList, tmpPredictEdbConfCalculateMapping)
  703. }
  704. for _, f := range formulaSlice {
  705. formulaMap, e := utils.CheckFormula(f)
  706. if e != nil {
  707. err = fmt.Errorf("公式错误,请重新填写")
  708. return
  709. }
  710. //预先计算,判断公式是否正常
  711. ok, _ := models.CheckFormula2(edbInfoList, formulaMap, f, edbInfoIdBytes)
  712. if !ok {
  713. errMsg = "生成计算指标失败,请使用正确的计算公式"
  714. err = errors.New(errMsg)
  715. return
  716. }
  717. }
  718. calculateRuleMap[ruleIndex] = models.CalculateRule{
  719. TrendsCalculateMappingList: trendsMappingList,
  720. EdbInfoList: edbInfoList,
  721. EdbInfoIdBytes: edbInfoIdBytes,
  722. Formula: formula,
  723. RuleType: v.RuleType,
  724. EndDate: v.EndDate,
  725. EdbInfoIdArr: v.EdbInfoIdArr,
  726. }
  727. case 14: //14:根据 一元线性拟合 规则获取预测数据
  728. if v.Value == "" {
  729. errMsg = "请填写一元线性拟合规则"
  730. err = errors.New(errMsg)
  731. return
  732. }
  733. //关联的指标信息
  734. edbInfoList := make([]*models.EdbInfo, 0)
  735. // 动态环差规则 关系表
  736. trendsMappingList := make([]*models.PredictEdbConfCalculateMapping, 0)
  737. for k, tmpEdbInfoId := range v.EdbInfoIdArr {
  738. fromEdbInfo, tmpErr := models.GetEdbInfoById(tmpEdbInfoId.EdbInfoId)
  739. if tmpErr != nil {
  740. err = tmpErr
  741. if err.Error() == utils.ErrNoRow() {
  742. errMsg = "指标 " + strconv.Itoa(tmpEdbInfoId.EdbInfoId) + " 不存在"
  743. err = errors.New(errMsg)
  744. return
  745. }
  746. errMsg = "获取指标失败:Err:" + err.Error()
  747. err = errors.New(errMsg)
  748. return
  749. }
  750. edbInfoList = append(edbInfoList, fromEdbInfo)
  751. //总的 预测指标与所有相关联指标的关系表(不仅仅该条规则)
  752. {
  753. if _, ok := fromEdbMap[tmpEdbInfoId.EdbInfoId]; !ok {
  754. fromEdbMap[tmpEdbInfoId.EdbInfoId] = tmpEdbInfoId.EdbInfoId
  755. tmpCalculateMappingItem := &models.EdbInfoCalculateMapping{
  756. EdbInfoCalculateMappingId: 0,
  757. EdbInfoId: 0,
  758. Source: utils.DATA_SOURCE_CALCULATE,
  759. SourceName: "指标运算",
  760. EdbCode: "",
  761. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  762. FromEdbCode: fromEdbInfo.EdbCode,
  763. FromEdbName: fromEdbInfo.EdbName,
  764. FromSource: fromEdbInfo.Source,
  765. FromSourceName: fromEdbInfo.SourceName,
  766. //FromTag: tmpEdbInfoId.FromTag,
  767. Sort: k + 1,
  768. CreateTime: time.Now(),
  769. ModifyTime: time.Now(),
  770. }
  771. calculateMappingList = append(calculateMappingList, tmpCalculateMappingItem)
  772. }
  773. }
  774. // 动态环差规则 关系表
  775. tmpPredictEdbConfCalculateMapping := &models.PredictEdbConfCalculateMapping{
  776. //PredictEdbConfCalculateMappingId: 0,
  777. EdbInfoId: 0,
  778. ConfigId: 0,
  779. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  780. FromEdbCode: fromEdbInfo.EdbCode,
  781. FromEdbName: fromEdbInfo.EdbName,
  782. FromSource: fromEdbInfo.Source,
  783. FromSourceName: fromEdbInfo.SourceName,
  784. FromTag: tmpEdbInfoId.FromTag,
  785. Sort: k + 1,
  786. CreateTime: time.Now(),
  787. ModifyTime: time.Now(),
  788. }
  789. trendsMappingList = append(trendsMappingList, tmpPredictEdbConfCalculateMapping)
  790. }
  791. // todo
  792. calculateRuleMap[ruleIndex] = models.CalculateRule{
  793. TrendsCalculateMappingList: trendsMappingList,
  794. EdbInfoList: edbInfoList,
  795. //EdbInfoIdBytes: edbInfoIdBytes,
  796. //Formula: formula,
  797. RuleType: v.RuleType,
  798. EndDate: v.EndDate,
  799. EdbInfoIdArr: v.EdbInfoIdArr,
  800. }
  801. }
  802. tmpPredictEdbConf := &models.PredictEdbConf{
  803. PredictEdbInfoId: edbInfoId,
  804. SourceEdbInfoId: sourceEdbInfo.EdbInfoId,
  805. RuleType: v.RuleType,
  806. //FixedValue: v.Value,
  807. Value: v.Value,
  808. EndDate: ruleEndDate,
  809. EndNum: v.EndNum,
  810. ModifyTime: time.Now(),
  811. CreateTime: time.Now(),
  812. }
  813. if endDateType == 0 {
  814. tmpPredictEdbConf.EndDate = ruleEndDate
  815. }
  816. // todo
  817. edbInfo.EndDate = v.EndDate
  818. predictEdbConfList = append(predictEdbConfList, tmpPredictEdbConf)
  819. }
  820. err, errMsg = models.EditPredictEdb(edbInfo, updateEdbInfoCol, calculateMappingList, predictEdbConfList, calculateRuleMap)
  821. return
  822. }
  823. // RefreshPredictEdbInfo 更新基础预测指标规则中的动态数据
  824. func RefreshPredictEdbInfo(edbInfoId int) (edbInfo *models.EdbInfo, err error, errMsg string) {
  825. // 指标信息校验
  826. {
  827. edbInfo, err = models.GetEdbInfoById(edbInfoId)
  828. if err != nil && !utils.IsErrNoRow(err) {
  829. errMsg = "刷新失败"
  830. err = errors.New("获取预测指标失败,Err:" + err.Error())
  831. return
  832. }
  833. if edbInfo == nil {
  834. errMsg = "找不到该预测指标"
  835. err = nil
  836. return
  837. }
  838. //必须是普通的指标
  839. if edbInfo.EdbInfoType != 1 {
  840. errMsg = "指标异常,不是预测指标"
  841. return
  842. }
  843. }
  844. // 配置 与 指标的 关联关系表
  845. list, err := models.GetPredictEdbConfCalculateMappingListByEdbInfoId(edbInfoId)
  846. if err != nil {
  847. return
  848. }
  849. // 没有关联指标,不需要刷新
  850. if len(list) <= 0 {
  851. return
  852. }
  853. // 配置关联的指标信息
  854. predictEdbConfCalculateMappingListMap := make(map[int][]*models.PredictEdbConfCalculateMapping)
  855. configIdList := make([]int, 0) //关联配置id
  856. edbInfoIdList := make([]int, 0) //关联指标配置id
  857. edbInfoIdMap := make(map[int]int, 0) //关联指标配置map
  858. for _, v := range list {
  859. configList, ok := predictEdbConfCalculateMappingListMap[v.ConfigId]
  860. if !ok {
  861. configList = make([]*models.PredictEdbConfCalculateMapping, 0)
  862. configIdList = append(configIdList, v.ConfigId)
  863. }
  864. if _, ok := edbInfoIdMap[v.FromEdbInfoId]; !ok {
  865. edbInfoIdList = append(edbInfoIdList, v.FromEdbInfoId)
  866. }
  867. configList = append(configList, v)
  868. predictEdbConfCalculateMappingListMap[v.ConfigId] = configList
  869. }
  870. predictEdbConfList, err := models.GetPredictEdbConfListByConfigIdList(configIdList)
  871. if err != nil {
  872. errMsg = "刷新失败"
  873. err = errors.New("获取预测指标配置信息失败,Err:" + err.Error())
  874. return
  875. }
  876. if len(predictEdbConfList) == 0 {
  877. errMsg = "找不到该预测指标配置"
  878. err = nil
  879. return
  880. }
  881. // 指标信息
  882. edbInfoList, err := models.GetEdbInfoByIdList(edbInfoIdList)
  883. if err != nil {
  884. err = errors.New("获取关联指标失败,Err:" + err.Error())
  885. return
  886. }
  887. // 指标信息map
  888. edbInfoListMap := make(map[int]*models.EdbInfo)
  889. for _, v := range edbInfoList {
  890. edbInfoListMap[v.EdbInfoId] = v
  891. }
  892. predictEdbConfAndDataList := make([]*models.PredictEdbConfAndData, 0)
  893. // 刷新所有的规则
  894. for _, v := range predictEdbConfList {
  895. // 每次规则计算的时候,产生的临时数据
  896. resultDataList := make([]*models.EdbInfoSearchData, 0)
  897. switch v.RuleType {
  898. case 9: //动态环差值
  899. if v.Value == "" {
  900. errMsg = "请填写计算规则"
  901. return
  902. }
  903. // todo 动态环差的空值类型处理
  904. formula := v.Value
  905. // 动态环差规则 关系表
  906. trendsMappingList := predictEdbConfCalculateMappingListMap[v.ConfigId]
  907. // 关联标签
  908. edbInfoIdArr := make([]models.EdbInfoFromTag, 0)
  909. //关联的指标信息
  910. edbInfoList := make([]*models.EdbInfo, 0)
  911. for _, trendsMapping := range trendsMappingList {
  912. tmpEdbInfo, ok := edbInfoListMap[trendsMapping.FromEdbInfoId]
  913. if ok {
  914. edbInfoList = append(edbInfoList, tmpEdbInfo)
  915. }
  916. // 关联标签
  917. edbInfoIdArr = append(edbInfoIdArr, models.EdbInfoFromTag{
  918. EdbInfoId: trendsMapping.FromEdbInfoId,
  919. FromTag: trendsMapping.FromTag,
  920. })
  921. }
  922. //检验公式
  923. var formulaStr string
  924. var edbInfoIdBytes []string
  925. for _, tmpEdbInfoId := range edbInfoIdArr {
  926. formulaStr += tmpEdbInfoId.FromTag + ","
  927. edbInfoIdBytes = append(edbInfoIdBytes, tmpEdbInfoId.FromTag)
  928. }
  929. formulaSlice, tErr := utils.CheckFormulaJson(formula)
  930. if tErr != nil {
  931. errMsg = "公式格式错误,请重新填写"
  932. err = errors.New(errMsg)
  933. return
  934. }
  935. for _, fm := range formulaSlice {
  936. formulaMap, e := utils.CheckFormula(fm)
  937. if e != nil {
  938. err = fmt.Errorf("公式错误,请重新填写")
  939. return
  940. }
  941. for _, f := range formulaMap {
  942. if !strings.Contains(formulaStr, f) {
  943. errMsg = "公式错误,请重新填写"
  944. err = errors.New(errMsg)
  945. return
  946. }
  947. }
  948. //预先计算,判断公式是否正常
  949. ok, _ := models.CheckFormula2(edbInfoList, formulaMap, fm, edbInfoIdBytes)
  950. if !ok {
  951. errMsg = "生成计算指标失败,请使用正确的计算公式"
  952. return
  953. }
  954. }
  955. rule := models.CalculateRule{
  956. EdbInfoId: v.PredictEdbInfoId,
  957. ConfigId: v.ConfigId,
  958. TrendsCalculateMappingList: trendsMappingList,
  959. EdbInfoList: edbInfoList,
  960. EdbInfoIdBytes: edbInfoIdBytes,
  961. Formula: formula,
  962. RuleType: v.RuleType,
  963. EndDate: v.EndDate.Format(utils.FormatDate),
  964. EdbInfoIdArr: edbInfoIdArr,
  965. }
  966. resultDataList, err = models.RefreshCalculateByRuleBy9(rule)
  967. if err != nil {
  968. return
  969. }
  970. case 14: //14:根据 一元线性拟合 规则获取预测数据
  971. if v.Value == "" {
  972. errMsg = "一元线性拟合规则信息未配置"
  973. return
  974. }
  975. err, errMsg = models.RefreshCalculateByRuleByLineNh(*edbInfo, predictEdbConfAndDataList, *v)
  976. if err != nil {
  977. return
  978. }
  979. }
  980. // 规则配置(含数据)
  981. tmpPredictEdbConfAndData := &models.PredictEdbConfAndData{
  982. ConfigId: 0,
  983. PredictEdbInfoId: 0,
  984. SourceEdbInfoId: v.SourceEdbInfoId,
  985. RuleType: v.RuleType,
  986. FixedValue: v.FixedValue,
  987. Value: v.Value,
  988. EndDate: v.EndDate,
  989. ModifyTime: v.ModifyTime,
  990. CreateTime: v.CreateTime,
  991. DataList: resultDataList,
  992. }
  993. predictEdbConfAndDataList = append(predictEdbConfAndDataList, tmpPredictEdbConfAndData)
  994. }
  995. return
  996. }
  997. // checkExistByEdbName
  998. // @Description: 根据指标名称校验该指标是否存在库中
  999. // @author: Roc
  1000. // @datetime 2024-04-18 14:58:52
  1001. // @param edbInfoType int
  1002. // @param edbName string
  1003. // @param lang string
  1004. // @return has bool
  1005. // @return err error
  1006. func checkExistByEdbName(edbInfoType int, edbName, lang string) (has bool, err error) {
  1007. var condition string
  1008. var pars []interface{}
  1009. condition += " AND edb_info_type=? "
  1010. pars = append(pars, edbInfoType)
  1011. switch lang {
  1012. case utils.EnLangVersion:
  1013. condition += " AND edb_name_en = ? "
  1014. default:
  1015. condition += " AND edb_name=? "
  1016. }
  1017. pars = append(pars, edbName)
  1018. count, err := models.GetEdbInfoCountByCondition(condition, pars)
  1019. if err != nil {
  1020. return
  1021. }
  1022. if count > 0 {
  1023. has = true
  1024. return
  1025. }
  1026. return
  1027. }
  1028. // checkExistByEdbNameAndEdbInfoId
  1029. // @Description: 根据指标名称和指标ID校验库中是否还存在其他同名指标
  1030. // @author: Roc
  1031. // @datetime 2024-04-18 15:00:19
  1032. // @param edbInfoType int
  1033. // @param edbInfoId int
  1034. // @param edbName string
  1035. // @param lang string
  1036. // @return has bool
  1037. // @return err error
  1038. func checkExistByEdbNameAndEdbInfoId(edbInfoType, edbInfoId int, edbName, lang string) (has bool, err error) {
  1039. var condition string
  1040. var pars []interface{}
  1041. condition += " AND edb_info_type=? "
  1042. pars = append(pars, edbInfoType)
  1043. condition += " AND edb_info_id<>? "
  1044. pars = append(pars, edbInfoId)
  1045. switch lang {
  1046. case utils.EnLangVersion:
  1047. condition += " AND edb_name_en = ? "
  1048. default:
  1049. condition += " AND edb_name=? "
  1050. }
  1051. pars = append(pars, edbName)
  1052. count, err := models.GetEdbInfoCountByCondition(condition, pars)
  1053. if err != nil {
  1054. return
  1055. }
  1056. if count > 0 {
  1057. has = true
  1058. return
  1059. }
  1060. return
  1061. }
  1062. // CheckExistByEdbNameAndEdbInfoId
  1063. // @Description: 根据指标名称和指标ID校验库中是否还存在其他同名指标
  1064. // @author: Roc
  1065. // @datetime 2024-04-18 15:01:44
  1066. // @param edbInfoType int
  1067. // @param edbInfoId int
  1068. // @param edbName string
  1069. // @param lang string
  1070. // @return has bool
  1071. // @return err error
  1072. func CheckExistByEdbNameAndEdbInfoId(edbInfoType, edbInfoId int, edbName, lang string) (has bool, err error) {
  1073. // 指标没有入库的情况
  1074. if edbInfoId == 0 {
  1075. return checkExistByEdbName(edbInfoType, edbName, lang)
  1076. }
  1077. //指标已经入库的情况
  1078. return checkExistByEdbNameAndEdbInfoId(edbInfoType, edbInfoId, edbName, lang)
  1079. }
  1080. // AddStaticPredictEdbInfo 新增静态指标数据
  1081. func AddStaticPredictEdbInfo(sourceEdbInfoId, classifyId int, edbName, frequency, unit string, sysUserId int, sysUserName, lang string) (edbInfo *models.EdbInfo, err error, errMsg string) {
  1082. var sourceEdbInfo *models.EdbInfo
  1083. // 来源指标信息校验
  1084. {
  1085. sourceEdbInfo, err = models.GetEdbInfoById(sourceEdbInfoId)
  1086. if err != nil && !utils.IsErrNoRow(err) {
  1087. errMsg = "新增失败"
  1088. err = errors.New("获取来源指标失败,Err:" + err.Error())
  1089. return
  1090. }
  1091. if sourceEdbInfo == nil {
  1092. errMsg = "找不到该来源指标"
  1093. err = errors.New(errMsg)
  1094. return
  1095. }
  1096. }
  1097. var classifyInfo *models.EdbClassify
  1098. // 来源分类信息校验
  1099. {
  1100. classifyInfo, err = models.GetEdbClassifyById(classifyId)
  1101. if err != nil && !utils.IsErrNoRow(err) {
  1102. errMsg = "新增失败"
  1103. err = errors.New("获取预测指标分类失败,Err:" + err.Error())
  1104. return
  1105. }
  1106. if classifyInfo == nil {
  1107. errMsg = "找不到该预测指标分类"
  1108. err = errors.New(errMsg)
  1109. return
  1110. }
  1111. //必须是预测指标分类
  1112. if classifyInfo.ClassifyType != 1 {
  1113. errMsg = "预测指标分类异常,不是预测指标分类"
  1114. err = errors.New(errMsg)
  1115. return
  1116. }
  1117. }
  1118. edbName = strings.Trim(edbName, " ")
  1119. edbCode := sourceEdbInfo.EdbCode + "_" + time.Now().Format(utils.FormatShortDateTimeUnSpace)
  1120. // 根据指标名称和指标ID校验库中是否还存在其他同名指标
  1121. existEdbName, err := CheckExistByEdbNameAndEdbInfoId(utils.PREDICT_EDB_INFO_TYPE, 0, edbName, lang)
  1122. if err != nil {
  1123. errMsg = "判断指标名称是否存在失败"
  1124. err = errors.New("判断指标名称是否存在失败,Err:" + err.Error())
  1125. return
  1126. }
  1127. if existEdbName {
  1128. errMsg = "指标名称已存在,请重新填写"
  1129. err = errors.New(errMsg)
  1130. return
  1131. }
  1132. timestamp := strconv.FormatInt(time.Now().UnixNano(), 10)
  1133. edbInfo = &models.EdbInfo{
  1134. //EdbInfoId: 0,
  1135. EdbInfoType: sourceEdbInfo.EdbInfoType,
  1136. SourceName: sourceEdbInfo.SourceName,
  1137. Source: sourceEdbInfo.Source,
  1138. EdbCode: edbCode,
  1139. EdbName: edbName,
  1140. EdbNameSource: edbName,
  1141. Frequency: frequency,
  1142. Unit: unit,
  1143. StartDate: sourceEdbInfo.StartDate,
  1144. EndDate: sourceEdbInfo.EndDate,
  1145. ClassifyId: classifyId,
  1146. SysUserId: sysUserId,
  1147. SysUserRealName: sysUserName,
  1148. UniqueCode: utils.MD5(utils.DATA_PREFIX + "_" + timestamp),
  1149. CreateTime: time.Now(),
  1150. ModifyTime: time.Now(),
  1151. MinValue: sourceEdbInfo.MinValue,
  1152. MaxValue: sourceEdbInfo.MaxValue,
  1153. EndValue: sourceEdbInfo.EndValue,
  1154. CalculateFormula: sourceEdbInfo.CalculateFormula,
  1155. EdbType: sourceEdbInfo.EdbType,
  1156. //Sort: sourceEdbInfo.,
  1157. LatestDate: sourceEdbInfo.LatestDate,
  1158. LatestValue: sourceEdbInfo.LatestValue,
  1159. MoveType: sourceEdbInfo.MoveType,
  1160. MoveFrequency: sourceEdbInfo.MoveFrequency,
  1161. NoUpdate: sourceEdbInfo.NoUpdate,
  1162. IsUpdate: sourceEdbInfo.IsUpdate,
  1163. ServerUrl: "",
  1164. EdbNameEn: edbName,
  1165. UnitEn: sourceEdbInfo.UnitEn,
  1166. DataDateType: sourceEdbInfo.DataDateType,
  1167. Sort: models.GetAddEdbMaxSortByClassifyId(classifyId, utils.PREDICT_EDB_INFO_TYPE),
  1168. IsStaticData: 1,
  1169. }
  1170. // 关联关系表
  1171. calculateMappingList := make([]*models.EdbInfoCalculateMapping, 0)
  1172. fromEdbMap := make(map[int]int)
  1173. // 源指标关联关系表
  1174. calculateMappingItem := &models.EdbInfoCalculateMapping{
  1175. //EdbInfoCalculateMappingId: 0,
  1176. //EdbInfoId: 0,
  1177. Source: edbInfo.Source,
  1178. SourceName: edbInfo.SourceName,
  1179. EdbCode: edbInfo.EdbCode,
  1180. FromEdbInfoId: sourceEdbInfo.EdbInfoId,
  1181. FromEdbCode: sourceEdbInfo.EdbCode,
  1182. FromEdbName: sourceEdbInfo.EdbName,
  1183. FromSource: sourceEdbInfo.Source,
  1184. FromSourceName: sourceEdbInfo.SourceName,
  1185. //FromTag: "",
  1186. Sort: 1,
  1187. CreateTime: time.Now(),
  1188. ModifyTime: time.Now(),
  1189. }
  1190. fromEdbMap[sourceEdbInfoId] = sourceEdbInfoId
  1191. calculateMappingList = append(calculateMappingList, calculateMappingItem)
  1192. newPredictEdbConfList := make([]*models.PredictEdbConf, 0)
  1193. //查询原先的预测指标配置项
  1194. if sourceEdbInfo.EdbType == 1 {
  1195. // 查找该预测指标配置
  1196. predictEdbConfList, tmpErr := models.GetPredictEdbConfListById(sourceEdbInfo.EdbInfoId)
  1197. if tmpErr != nil && !utils.IsErrNoRow(tmpErr) {
  1198. errMsg = "获取预测指标配置信息失败"
  1199. err = errors.New("获取预测指标配置信息失败,Err:" + tmpErr.Error())
  1200. return
  1201. }
  1202. if len(predictEdbConfList) > 0 {
  1203. // 遍历
  1204. for _, v := range predictEdbConfList {
  1205. tmpPredictEdbConf := &models.PredictEdbConf{
  1206. PredictEdbInfoId: 0,
  1207. SourceEdbInfoId: sourceEdbInfoId,
  1208. RuleType: v.RuleType,
  1209. FixedValue: v.FixedValue,
  1210. Value: v.Value,
  1211. EmptyType: v.EmptyType,
  1212. MaxEmptyType: v.MaxEmptyType,
  1213. EndDate: v.EndDate,
  1214. ModifyTime: time.Now(),
  1215. CreateTime: time.Now(),
  1216. }
  1217. newPredictEdbConfList = append(newPredictEdbConfList, tmpPredictEdbConf)
  1218. }
  1219. }
  1220. }
  1221. err, errMsg = models.AddPredictStaticEdb(edbInfo, sourceEdbInfo, calculateMappingList, newPredictEdbConfList)
  1222. return
  1223. }