predict_edb.go 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396
  1. package models
  2. import (
  3. "encoding/json"
  4. "errors"
  5. "eta/eta_index_lib/utils"
  6. "fmt"
  7. "github.com/beego/beego/v2/client/orm"
  8. "github.com/shopspring/decimal"
  9. "github.com/yidane/formula"
  10. "strings"
  11. "time"
  12. )
  13. // CalculateRule 预测指标 规则 计算
  14. type CalculateRule struct {
  15. EdbInfoId int `description:"指标id"`
  16. ConfigId int `description:"配置id"`
  17. TrendsCalculateMappingList []*PredictEdbConfCalculateMapping
  18. EdbInfoList []*EdbInfo
  19. EdbInfoIdBytes []string
  20. Formula string
  21. RuleType int `description:"预测规则,1:最新,2:固定值,3:同比,4:同差,5:环比,6:环差,7:N期移动均值,8:N期段线性外推值,9:动态环差"`
  22. EndDate string `description:"截止日期"`
  23. EdbInfoIdArr []EdbInfoFromTag `description:"指标信息"`
  24. }
  25. // RefreshCalculateByRuleBy9 刷新计算
  26. func RefreshCalculateByRuleBy9(rule CalculateRule) (resultDataList []*EdbInfoSearchData, err error) {
  27. o := orm.NewOrm()
  28. to, err := o.Begin()
  29. if err != nil {
  30. return
  31. }
  32. defer func() {
  33. if err != nil {
  34. to.Rollback()
  35. } else {
  36. err = to.Commit()
  37. }
  38. }()
  39. resultDataList, err = CalculateByRuleBy9(to, rule)
  40. return
  41. }
  42. // CalculateByRuleBy9 动态环差规则计算入库
  43. func CalculateByRuleBy9(to orm.TxOrmer, rule CalculateRule) (resultDataList []*EdbInfoSearchData, err error) {
  44. realSaveDataMap := make(map[string]map[int]float64)
  45. saveDataMap := make(map[string]map[int]float64)
  46. // 最小的结束日期 , 最晚的数据开始日期
  47. var minLatestDate, maxStartDate time.Time
  48. dateList := make([]string, 0) // 第一个指标的日期数据
  49. formulaStr := strings.ToUpper(rule.Formula)
  50. // 获取关联指标数据
  51. for _, v := range rule.EdbInfoList {
  52. dataList, tmpErr := GetPredictEdbDataListAll(v, 1)
  53. if tmpErr != nil {
  54. err = tmpErr
  55. return
  56. }
  57. lenData := len(dataList)
  58. for edbInfoIndex, dv := range dataList {
  59. // 现有实际数据
  60. if val, ok := realSaveDataMap[dv.DataTime]; ok {
  61. if _, ok := val[v.EdbInfoId]; !ok {
  62. val[v.EdbInfoId] = dv.Value
  63. }
  64. } else {
  65. temp := make(map[int]float64)
  66. temp[v.EdbInfoId] = dv.Value
  67. realSaveDataMap[dv.DataTime] = temp
  68. }
  69. // 待处理的数据
  70. if val, ok := saveDataMap[dv.DataTime]; ok {
  71. if _, ok := val[v.EdbInfoId]; !ok {
  72. val[v.EdbInfoId] = dv.Value
  73. }
  74. } else {
  75. temp := make(map[int]float64)
  76. temp[v.EdbInfoId] = dv.Value
  77. saveDataMap[dv.DataTime] = temp
  78. }
  79. // 以第一个指标的日期作为基准日期
  80. if edbInfoIndex == 0 {
  81. dateList = append(dateList, dv.DataTime)
  82. }
  83. }
  84. if lenData > 0 {
  85. tmpLatestDate, _ := time.ParseInLocation(utils.FormatDate, dataList[lenData-1].DataTime, time.Local)
  86. if minLatestDate.IsZero() || minLatestDate.After(tmpLatestDate) {
  87. minLatestDate = tmpLatestDate
  88. }
  89. tmpStartDate, _ := time.ParseInLocation(utils.FormatDate, dataList[0].DataTime, time.Local)
  90. if maxStartDate.IsZero() || maxStartDate.Before(tmpStartDate) {
  91. maxStartDate = tmpStartDate
  92. }
  93. }
  94. }
  95. //数据处理,将日期内不全的数据做填补
  96. handleDateSaveDataMap(dateList, maxStartDate, minLatestDate, realSaveDataMap, saveDataMap, rule.EdbInfoList)
  97. // 添加数据
  98. addDataList := make([]*PredictEdbRuleData, 0)
  99. // 计算规则
  100. formulaMap := utils.CheckFormula(formulaStr)
  101. //获取指标所有数据
  102. dataList := make([]*PredictEdbRuleData, 0)
  103. sql := `SELECT * FROM predict_edb_rule_data WHERE config_id = ?`
  104. _, err = to.Raw(sql, rule.ConfigId).QueryRows(&dataList)
  105. if err != nil {
  106. return
  107. }
  108. dataMap := make(map[string]*PredictEdbRuleData)
  109. for _, v := range dataList {
  110. dataMap[v.DataTime] = v
  111. }
  112. existDataMap := make(map[string]string)
  113. removeDateList := make([]string, 0) //需要移除的日期
  114. for sk, sv := range saveDataMap {
  115. //fmt.Println(sk, sv)
  116. formulaFormStr := ReplaceFormula(rule.EdbInfoList, sv, formulaMap, formulaStr, rule.EdbInfoIdBytes)
  117. //计算公式异常,那么就移除该指标
  118. if formulaFormStr == "" {
  119. removeDateList = append(removeDateList, sk)
  120. continue
  121. }
  122. //utils.FileLog.Info(fmt.Sprintf("formulaFormStr:%s", formulaFormStr))
  123. expression := formula.NewExpression(formulaFormStr)
  124. calResult, tmpErr := expression.Evaluate()
  125. if tmpErr != nil {
  126. // 分母为0的报错
  127. if strings.Contains(tmpErr.Error(), "divide by zero") {
  128. removeDateList = append(removeDateList, sk)
  129. continue
  130. }
  131. err = errors.New("计算失败:Err:" + tmpErr.Error() + ";formulaStr:" + formulaFormStr)
  132. //fmt.Println(err)
  133. return
  134. }
  135. calVal, tmpErr := calResult.Float64()
  136. if tmpErr != nil {
  137. err = errors.New("计算失败:获取计算值失败 Err:" + tmpErr.Error() + ";formulaStr:" + formulaFormStr)
  138. //fmt.Println(err)
  139. return
  140. }
  141. nanCheck := fmt.Sprintf("%0.f", calVal)
  142. if nanCheck == "NaN" || nanCheck == "+Inf" || nanCheck == "-Inf" {
  143. removeDateList = append(removeDateList, sk)
  144. continue
  145. }
  146. saveValue := decimal.NewFromFloat(calVal).RoundCeil(4).String() //utils.SubFloatToString(calVal, 4)
  147. existPredictEdbRuleData, ok := dataMap[sk]
  148. if !ok {
  149. dataTime, _ := time.ParseInLocation(utils.FormatDate, sk, time.Local)
  150. timestamp := dataTime.UnixNano() / 1e6
  151. if _, existOk := existDataMap[sk]; !existOk {
  152. tmpPredictEdbRuleData := &PredictEdbRuleData{
  153. //PredictEdbRuleDataId: 0,
  154. EdbInfoId: rule.EdbInfoId,
  155. ConfigId: rule.ConfigId,
  156. DataTime: sk,
  157. Value: saveValue,
  158. CreateTime: time.Now(),
  159. ModifyTime: time.Now(),
  160. DataTimestamp: timestamp,
  161. }
  162. addDataList = append(addDataList, tmpPredictEdbRuleData)
  163. }
  164. existDataMap[sk] = sk
  165. } else {
  166. existValDecimal, tmpErr := decimal.NewFromString(existPredictEdbRuleData.Value)
  167. if tmpErr != nil {
  168. err = tmpErr
  169. return
  170. }
  171. existStr := existValDecimal.String()
  172. if existStr != saveValue {
  173. existPredictEdbRuleData.Value = saveValue
  174. existPredictEdbRuleData.ModifyTime = time.Now()
  175. _, err = to.Update(existPredictEdbRuleData, "Value", "ModifyTime")
  176. if err != nil {
  177. return
  178. }
  179. }
  180. }
  181. // 计算出来的结果集
  182. resultDataList = append(resultDataList, &EdbInfoSearchData{
  183. //EdbDataId: 0,
  184. DataTime: sk,
  185. Value: calVal,
  186. })
  187. }
  188. // 添加计算出来的值入库
  189. lenAddDataList := len(addDataList)
  190. if lenAddDataList > 0 {
  191. _, err = to.InsertMulti(lenAddDataList, addDataList)
  192. if err != nil {
  193. return
  194. }
  195. }
  196. //删除多余的值
  197. lenRemoveDateList := len(removeDateList)
  198. if lenRemoveDateList > 0 {
  199. //如果拼接指标变更了,那么需要删除所有的指标数据
  200. sql := ` DELETE FROM predict_edb_rule_data WHERE config_id = ? and data_time in (` + utils.GetOrmInReplace(lenRemoveDateList) + `) `
  201. _, err = to.Raw(sql, rule.ConfigId, removeDateList).Exec()
  202. if err != nil {
  203. err = fmt.Errorf("删除计算失败的预测规则计算指标数据失败,Err:" + err.Error())
  204. return
  205. }
  206. }
  207. return
  208. }
  209. // RefreshCalculateByRuleByLineNh 刷新动态结果计算(线性拟合)
  210. func RefreshCalculateByRuleByLineNh(predictEdbInfo EdbInfo, predictEdbConfAndDataList []*PredictEdbConfAndData, rule PredictEdbConf) (err error, errMsg string) {
  211. o := orm.NewOrm()
  212. to, err := o.Begin()
  213. if err != nil {
  214. return
  215. }
  216. defer func() {
  217. if err != nil {
  218. to.Rollback()
  219. } else {
  220. err = to.Commit()
  221. }
  222. }()
  223. err, errMsg = CalculateByRuleByRuleLineNh(to, predictEdbInfo, predictEdbConfAndDataList, rule)
  224. return
  225. }
  226. // CalculateByRuleByRuleLineNh 一元线性拟合规则计算入库
  227. func CalculateByRuleByRuleLineNh(to orm.TxOrmer, predictEdbInfo EdbInfo, predictEdbConfAndDataList []*PredictEdbConfAndData, rule PredictEdbConf) (err error, errMsg string) {
  228. var secondDataList []*EdbInfoSearchData
  229. predictEdbInfoId := predictEdbInfo.EdbInfoId // 预测指标id
  230. // 规则
  231. var ruleConf RuleLineNhConf
  232. tmpErr := json.Unmarshal([]byte(rule.Value), &ruleConf)
  233. if tmpErr != nil {
  234. errMsg = `季节性配置信息异常`
  235. err = errors.New("季节性配置信息异常:" + tmpErr.Error())
  236. return
  237. }
  238. // 获取自身指标的数据
  239. {
  240. // 来源指标
  241. var sourceEdbInfoItem *EdbInfo
  242. sql := ` SELECT * FROM edb_info WHERE edb_info_id=? `
  243. err = to.Raw(sql, rule.SourceEdbInfoId).QueryRow(&sourceEdbInfoItem)
  244. if err != nil {
  245. return
  246. }
  247. predictEdbInfo.EdbInfoId = 0
  248. secondDataList, err, _ = GetPredictDataListByPredictEdbConfList(&predictEdbInfo, sourceEdbInfoItem, predictEdbConfAndDataList, 1, ``)
  249. if err != nil {
  250. return
  251. }
  252. }
  253. lenSecondData := len(secondDataList)
  254. if lenSecondData <= 0 {
  255. return
  256. }
  257. newNhccDataMap, err, errMsg := getCalculateNhccData(secondDataList, ruleConf)
  258. if err != nil {
  259. return
  260. }
  261. //将最后计算出来的结果数据处理(新增入库、编辑日期的值、删除日期)
  262. {
  263. // 获取需要预测的日期
  264. startDateStr := secondDataList[lenSecondData-1].DataTime
  265. startDate, _ := time.ParseInLocation(utils.FormatDate, startDateStr, time.Local)
  266. //endDate, _ := time.ParseInLocation(utils.FormatDate, ruleConf.EndDate, time.Local)
  267. endDate := rule.EndDate
  268. dayList := getPredictEdbDayList(startDate, endDate, predictEdbInfo.Frequency, predictEdbInfo.DataDateType)
  269. if len(dayList) <= 0 { // 如果未来没有日期的话,那么就退出当前循环,进入下一个循环
  270. return
  271. }
  272. //获取该配置的所有数据
  273. dataList := make([]*PredictEdbRuleData, 0)
  274. sql := `SELECT * FROM predict_edb_rule_data WHERE config_id = ?`
  275. _, err = to.Raw(sql, rule.ConfigId).QueryRows(&dataList)
  276. if err != nil {
  277. return
  278. }
  279. dataMap := make(map[string]*PredictEdbRuleData)
  280. for _, v := range dataList {
  281. dataMap[v.DataTime] = v
  282. }
  283. //需要移除的日期
  284. removeDateList := make([]string, 0)
  285. // 已经操作过的日期
  286. existDataMap := make(map[string]string)
  287. // 添加数据
  288. addDataList := make([]*PredictEdbRuleData, 0)
  289. for _, currentDate := range dayList {
  290. // 动态拟合残差值数据
  291. currentDateStr := currentDate.Format(utils.FormatDate)
  292. val, ok := newNhccDataMap[currentDateStr]
  293. // 找不到数据,那么就移除该日期的数据
  294. if !ok {
  295. removeDateList = append(removeDateList, currentDateStr)
  296. continue
  297. }
  298. saveValue := decimal.NewFromFloat(val).RoundCeil(4).String() //utils.SubFloatToString(calVal, 4)
  299. existPredictEdbRuleData, ok := dataMap[currentDateStr]
  300. if !ok {
  301. timestamp := currentDate.UnixNano() / 1e6
  302. if _, existOk := existDataMap[currentDateStr]; !existOk {
  303. tmpPredictEdbRuleData := &PredictEdbRuleData{
  304. //PredictEdbRuleDataId: 0,
  305. EdbInfoId: predictEdbInfoId,
  306. ConfigId: rule.ConfigId,
  307. DataTime: currentDateStr,
  308. Value: saveValue,
  309. CreateTime: time.Now(),
  310. ModifyTime: time.Now(),
  311. DataTimestamp: timestamp,
  312. }
  313. addDataList = append(addDataList, tmpPredictEdbRuleData)
  314. }
  315. existDataMap[currentDateStr] = currentDateStr
  316. } else {
  317. existValDecimal, tmpErr := decimal.NewFromString(existPredictEdbRuleData.Value)
  318. if tmpErr != nil {
  319. err = tmpErr
  320. return
  321. }
  322. existStr := existValDecimal.String()
  323. if existStr != saveValue {
  324. existPredictEdbRuleData.Value = saveValue
  325. existPredictEdbRuleData.ModifyTime = time.Now()
  326. _, err = to.Update(existPredictEdbRuleData, "Value", "ModifyTime")
  327. if err != nil {
  328. return
  329. }
  330. }
  331. }
  332. }
  333. // 添加计算出来的值入库
  334. lenAddDataList := len(addDataList)
  335. if lenAddDataList > 0 {
  336. _, err = to.InsertMulti(lenAddDataList, addDataList)
  337. if err != nil {
  338. return
  339. }
  340. }
  341. //删除多余的值
  342. lenRemoveDateList := len(removeDateList)
  343. if lenRemoveDateList > 0 {
  344. //如果拼接指标变更了,那么需要删除所有的指标数据
  345. sql := ` DELETE FROM predict_edb_rule_data WHERE config_id = ? and data_time in (` + utils.GetOrmInReplace(lenRemoveDateList) + `) `
  346. _, err = to.Raw(sql, rule.ConfigId, removeDateList).Exec()
  347. if err != nil {
  348. err = fmt.Errorf("删除计算失败的预测规则计算指标数据失败,Err:" + err.Error())
  349. return
  350. }
  351. }
  352. }
  353. return
  354. }