predict_edb.go 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318
  1. package logic
  2. import (
  3. "errors"
  4. "eta/eta_index_lib/models"
  5. "eta/eta_index_lib/utils"
  6. "fmt"
  7. "strconv"
  8. "strings"
  9. "time"
  10. )
  11. // AddPredictEdbInfo 新增预测指标
  12. func AddPredictEdbInfo(sourceEdbInfoId, classifyId int, edbName, dataDateType string, endDateType int, ruleList []models.RuleConfig, minValue, maxValue float64, sysUserId int, sysUserName, lang string) (edbInfo *models.EdbInfo, err error, errMsg string) {
  13. var sourceEdbInfo *models.EdbInfo
  14. // 来源指标信息校验
  15. {
  16. sourceEdbInfo, err = models.GetEdbInfoById(sourceEdbInfoId)
  17. if err != nil && !utils.IsErrNoRow(err) {
  18. errMsg = "新增失败"
  19. err = errors.New("获取来源指标失败,Err:" + err.Error())
  20. return
  21. }
  22. if sourceEdbInfo == nil {
  23. errMsg = "找不到该来源指标"
  24. err = errors.New(errMsg)
  25. return
  26. }
  27. //必须是普通的指标
  28. if sourceEdbInfo.EdbInfoType != 0 {
  29. errMsg = "来源指标异常,不是普通的指标"
  30. err = errors.New(errMsg)
  31. return
  32. }
  33. //if !utils.InArrayByStr([]string{"日度", "周度", "月度", "年度"}, sourceEdbInfo.Frequency) {
  34. // errMsg = "预测指标只支持选择日度、周度、月度、年度的指标"
  35. // err = errors.New(errMsg)
  36. // return
  37. //}
  38. }
  39. var classifyInfo *models.EdbClassify
  40. // 来源分类信息校验
  41. {
  42. classifyInfo, err = models.GetEdbClassifyById(classifyId)
  43. if err != nil && !utils.IsErrNoRow(err) {
  44. errMsg = "新增失败"
  45. err = errors.New("获取预测指标分类失败,Err:" + err.Error())
  46. return
  47. }
  48. if classifyInfo == nil {
  49. errMsg = "找不到该预测指标分类"
  50. err = errors.New(errMsg)
  51. return
  52. }
  53. //必须是预测指标分类
  54. if classifyInfo.ClassifyType != 1 {
  55. errMsg = "预测指标分类异常,不是预测指标分类"
  56. err = errors.New(errMsg)
  57. return
  58. }
  59. }
  60. edbName = strings.Trim(edbName, " ")
  61. edbCode := sourceEdbInfo.EdbCode + "_" + time.Now().Format(utils.FormatShortDateTimeUnSpace)
  62. // 根据指标名称和指标ID校验库中是否还存在其他同名指标
  63. existEdbName, err := CheckExistByEdbNameAndEdbInfoId(utils.PREDICT_EDB_INFO_TYPE, 0, edbName, lang)
  64. if err != nil {
  65. errMsg = "判断指标名称是否存在失败"
  66. err = errors.New("判断指标名称是否存在失败,Err:" + err.Error())
  67. return
  68. }
  69. if existEdbName {
  70. errMsg = "指标名称已存在,请重新填写"
  71. err = errors.New(errMsg)
  72. return
  73. }
  74. timestamp := strconv.FormatInt(time.Now().UnixNano(), 10)
  75. if dataDateType == `` {
  76. dataDateType = `自然日`
  77. }
  78. edbInfo = &models.EdbInfo{
  79. //EdbInfoId: 0,
  80. EdbInfoType: 1,
  81. SourceName: "预测指标",
  82. Source: utils.DATA_SOURCE_PREDICT,
  83. EdbCode: edbCode,
  84. EdbName: edbName,
  85. EdbNameSource: edbName,
  86. Frequency: sourceEdbInfo.Frequency,
  87. Unit: sourceEdbInfo.Unit,
  88. StartDate: sourceEdbInfo.StartDate,
  89. ClassifyId: classifyId,
  90. SysUserId: sysUserId,
  91. SysUserRealName: sysUserName,
  92. UniqueCode: utils.MD5(utils.DATA_PREFIX + "_" + timestamp),
  93. CreateTime: time.Now(),
  94. ModifyTime: time.Now(),
  95. MinValue: minValue,
  96. MaxValue: maxValue,
  97. CalculateFormula: sourceEdbInfo.CalculateFormula,
  98. EdbType: 1,
  99. //Sort: sourceEdbInfo.,
  100. LatestDate: sourceEdbInfo.LatestDate,
  101. LatestValue: sourceEdbInfo.LatestValue,
  102. MoveType: sourceEdbInfo.MoveType,
  103. MoveFrequency: sourceEdbInfo.MoveFrequency,
  104. NoUpdate: sourceEdbInfo.NoUpdate,
  105. ServerUrl: "",
  106. EdbNameEn: edbName,
  107. UnitEn: sourceEdbInfo.UnitEn,
  108. DataDateType: dataDateType,
  109. Sort: models.GetAddEdbMaxSortByClassifyId(classifyId, utils.PREDICT_EDB_INFO_TYPE),
  110. EndDateType: endDateType,
  111. }
  112. // 关联关系表
  113. calculateMappingList := make([]*models.EdbInfoCalculateMapping, 0)
  114. fromEdbMap := make(map[int]int)
  115. // 源指标关联关系表
  116. calculateMappingItem := &models.EdbInfoCalculateMapping{
  117. //EdbInfoCalculateMappingId: 0,
  118. //EdbInfoId: 0,
  119. Source: edbInfo.Source,
  120. SourceName: edbInfo.SourceName,
  121. EdbCode: edbInfo.EdbCode,
  122. FromEdbInfoId: sourceEdbInfo.EdbInfoId,
  123. FromEdbCode: sourceEdbInfo.EdbCode,
  124. FromEdbName: sourceEdbInfo.EdbName,
  125. FromSource: sourceEdbInfo.Source,
  126. FromSourceName: sourceEdbInfo.SourceName,
  127. //FromTag: "",
  128. Sort: 1,
  129. CreateTime: time.Now(),
  130. ModifyTime: time.Now(),
  131. }
  132. fromEdbMap[sourceEdbInfoId] = sourceEdbInfoId
  133. calculateMappingList = append(calculateMappingList, calculateMappingItem)
  134. // 动态环差 计算列表
  135. calculateRuleMap := make(map[int]models.CalculateRule, 0)
  136. // 预测指标配置
  137. predictEdbConfList := make([]*models.PredictEdbConf, 0)
  138. var ruleEndDate time.Time
  139. for ruleIndex, v := range ruleList {
  140. if endDateType == 0 {
  141. // 预测指标配置
  142. ruleEndDate, err = time.ParseInLocation(utils.FormatDate, v.EndDate, time.Local)
  143. if err != nil {
  144. errMsg = "规则配置的截止日期异常,请重新填写"
  145. err = errors.New(errMsg)
  146. return
  147. }
  148. } else {
  149. if v.EndNum <= 0 {
  150. errMsg = "截止期数不正确,请输入大于等于1的整数"
  151. err = errors.New(errMsg)
  152. return
  153. }
  154. }
  155. //1:最新,2:固定值,3:同比,4:同差,5:环比,6:环差,7:N期移动均值,8:N期段线性外推值,9:动态环差,10:根据 给定终值后插值 规则获取预测数据,11:根据 季节性 规则获取预测数据,12:根据 移动平均同比 规则获取预测数据
  156. // 环比、环差、动态环差、季节性、移动平均同比不支持年度
  157. if sourceEdbInfo.Frequency == "年度" && utils.InArrayByInt([]int{5, 6, 11, 12}, v.RuleType) {
  158. errMsg = "环比、环差、动态环差、季节性、移动平均同比不支持年度指标"
  159. err = errors.New(errMsg)
  160. return
  161. }
  162. if v.RuleType == 16 && endDateType == 1 {
  163. errMsg = "年度值倒推不支持截止期数"
  164. err = errors.New(errMsg)
  165. return
  166. }
  167. switch v.RuleType {
  168. case 8: //N期段线性外推值
  169. valInt, tmpErr := strconv.Atoi(v.Value)
  170. if tmpErr != nil {
  171. errMsg = "N期段线性外推值的N值异常"
  172. err = errors.New(errMsg)
  173. return
  174. }
  175. if valInt <= 1 {
  176. errMsg = "N期段线性外推值的N值必须大于1"
  177. err = errors.New(errMsg)
  178. return
  179. }
  180. case 9: //9:动态环差
  181. if v.Value == "" {
  182. errMsg = "请填写计算规则"
  183. err = errors.New(errMsg)
  184. return
  185. }
  186. formula := v.Value
  187. formula = strings.Replace(formula, "(", "(", -1)
  188. formula = strings.Replace(formula, ")", ")", -1)
  189. formula = strings.Replace(formula, ",", ",", -1)
  190. formula = strings.Replace(formula, "。", ".", -1)
  191. formula = strings.Replace(formula, "%", "*0.01", -1)
  192. v.Value = formula
  193. //检验公式
  194. var formulaStr string
  195. var edbInfoIdBytes []string
  196. for _, tmpEdbInfoId := range v.EdbInfoIdArr {
  197. formulaStr += tmpEdbInfoId.FromTag + ","
  198. edbInfoIdBytes = append(edbInfoIdBytes, tmpEdbInfoId.FromTag)
  199. }
  200. formulaSlice, tErr := utils.CheckFormulaJson(formula)
  201. if tErr != nil {
  202. errMsg = "公式格式错误,请重新填写"
  203. err = errors.New(errMsg)
  204. return
  205. }
  206. for _, fm := range formulaSlice {
  207. formulaMap, e := utils.CheckFormula(fm)
  208. if e != nil {
  209. err = fmt.Errorf("公式错误,请重新填写")
  210. return
  211. }
  212. for _, f := range formulaMap {
  213. if !strings.Contains(formulaStr, f) {
  214. errMsg = "公式错误,请重新填写"
  215. err = errors.New(errMsg)
  216. return
  217. }
  218. }
  219. }
  220. //关联的指标信息
  221. edbInfoList := make([]*models.EdbInfo, 0)
  222. // 动态环差规则 关系表
  223. trendsMappingList := make([]*models.PredictEdbConfCalculateMapping, 0)
  224. for k, tmpEdbInfoId := range v.EdbInfoIdArr {
  225. fromEdbInfo, tmpErr := models.GetEdbInfoById(tmpEdbInfoId.EdbInfoId)
  226. if tmpErr != nil {
  227. err = tmpErr
  228. if err.Error() == utils.ErrNoRow() {
  229. errMsg = "指标 " + strconv.Itoa(tmpEdbInfoId.EdbInfoId) + " 不存在"
  230. err = errors.New(errMsg)
  231. return
  232. }
  233. errMsg = "获取指标失败:Err:" + err.Error()
  234. err = errors.New(errMsg)
  235. return
  236. }
  237. edbInfoList = append(edbInfoList, fromEdbInfo)
  238. //总的 预测指标与所有相关联指标的关系表(不仅仅该条规则)
  239. {
  240. if _, ok := fromEdbMap[tmpEdbInfoId.EdbInfoId]; !ok {
  241. fromEdbMap[tmpEdbInfoId.EdbInfoId] = tmpEdbInfoId.EdbInfoId
  242. calculateMappingItem := &models.EdbInfoCalculateMapping{
  243. EdbInfoCalculateMappingId: 0,
  244. EdbInfoId: 0,
  245. Source: edbInfo.Source,
  246. SourceName: edbInfo.SourceName,
  247. EdbCode: "",
  248. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  249. FromEdbCode: fromEdbInfo.EdbCode,
  250. FromEdbName: fromEdbInfo.EdbName,
  251. FromSource: fromEdbInfo.Source,
  252. FromSourceName: fromEdbInfo.SourceName,
  253. //FromTag: tmpEdbInfoId.FromTag,
  254. Sort: k + 1,
  255. CreateTime: time.Now(),
  256. ModifyTime: time.Now(),
  257. }
  258. calculateMappingList = append(calculateMappingList, calculateMappingItem)
  259. }
  260. }
  261. // 动态环差规则 关系表
  262. tmpPredictEdbConfCalculateMapping := &models.PredictEdbConfCalculateMapping{
  263. //PredictEdbConfCalculateMappingId: 0,
  264. EdbInfoId: 0,
  265. ConfigId: 0,
  266. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  267. FromEdbCode: fromEdbInfo.EdbCode,
  268. FromEdbName: fromEdbInfo.EdbName,
  269. FromSource: fromEdbInfo.Source,
  270. FromSourceName: fromEdbInfo.SourceName,
  271. FromTag: tmpEdbInfoId.FromTag,
  272. Sort: k + 1,
  273. CreateTime: time.Now(),
  274. ModifyTime: time.Now(),
  275. }
  276. trendsMappingList = append(trendsMappingList, tmpPredictEdbConfCalculateMapping)
  277. }
  278. for _, f := range formulaSlice {
  279. formulaMap, e := utils.CheckFormula(f)
  280. if e != nil {
  281. err = fmt.Errorf("公式错误,请重新填写")
  282. return
  283. }
  284. //预先计算,判断公式是否正常
  285. ok, _ := models.CheckFormula2(edbInfoList, formulaMap, f, edbInfoIdBytes)
  286. if !ok {
  287. errMsg = "生成计算指标失败,请使用正确的计算公式"
  288. err = errors.New(errMsg)
  289. return
  290. }
  291. }
  292. calculateRuleMap[ruleIndex] = models.CalculateRule{
  293. TrendsCalculateMappingList: trendsMappingList,
  294. EdbInfoList: edbInfoList,
  295. EdbInfoIdBytes: edbInfoIdBytes,
  296. Formula: formula,
  297. RuleType: v.RuleType,
  298. EndDate: v.EndDate,
  299. EdbInfoIdArr: v.EdbInfoIdArr,
  300. }
  301. case 14: //14:根据 一元线性拟合 规则获取预测数据
  302. if v.Value == "" {
  303. errMsg = "请填写一元线性拟合规则"
  304. err = errors.New(errMsg)
  305. return
  306. }
  307. //关联的指标信息
  308. edbInfoList := make([]*models.EdbInfo, 0)
  309. // 动态环差规则 关系表
  310. trendsMappingList := make([]*models.PredictEdbConfCalculateMapping, 0)
  311. for k, tmpEdbInfoId := range v.EdbInfoIdArr {
  312. fromEdbInfo, tmpErr := models.GetEdbInfoById(tmpEdbInfoId.EdbInfoId)
  313. if tmpErr != nil {
  314. err = tmpErr
  315. if err.Error() == utils.ErrNoRow() {
  316. errMsg = "指标 " + strconv.Itoa(tmpEdbInfoId.EdbInfoId) + " 不存在"
  317. err = errors.New(errMsg)
  318. return
  319. }
  320. errMsg = "获取指标失败:Err:" + err.Error()
  321. err = errors.New(errMsg)
  322. return
  323. }
  324. edbInfoList = append(edbInfoList, fromEdbInfo)
  325. //总的 预测指标与所有相关联指标的关系表(不仅仅该条规则)
  326. {
  327. if _, ok := fromEdbMap[tmpEdbInfoId.EdbInfoId]; !ok {
  328. fromEdbMap[tmpEdbInfoId.EdbInfoId] = tmpEdbInfoId.EdbInfoId
  329. tmpCalculateMappingItem := &models.EdbInfoCalculateMapping{
  330. EdbInfoCalculateMappingId: 0,
  331. EdbInfoId: 0,
  332. Source: edbInfo.Source,
  333. SourceName: edbInfo.SourceName,
  334. EdbCode: "",
  335. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  336. FromEdbCode: fromEdbInfo.EdbCode,
  337. FromEdbName: fromEdbInfo.EdbName,
  338. FromSource: fromEdbInfo.Source,
  339. FromSourceName: fromEdbInfo.SourceName,
  340. //FromTag: tmpEdbInfoId.FromTag,
  341. Sort: k + 1,
  342. CreateTime: time.Now(),
  343. ModifyTime: time.Now(),
  344. }
  345. calculateMappingList = append(calculateMappingList, tmpCalculateMappingItem)
  346. }
  347. }
  348. // 动态环差规则 关系表
  349. tmpPredictEdbConfCalculateMapping := &models.PredictEdbConfCalculateMapping{
  350. //PredictEdbConfCalculateMappingId: 0,
  351. EdbInfoId: 0,
  352. ConfigId: 0,
  353. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  354. FromEdbCode: fromEdbInfo.EdbCode,
  355. FromEdbName: fromEdbInfo.EdbName,
  356. FromSource: fromEdbInfo.Source,
  357. FromSourceName: fromEdbInfo.SourceName,
  358. FromTag: tmpEdbInfoId.FromTag,
  359. Sort: k + 1,
  360. CreateTime: time.Now(),
  361. ModifyTime: time.Now(),
  362. }
  363. trendsMappingList = append(trendsMappingList, tmpPredictEdbConfCalculateMapping)
  364. }
  365. calculateRuleMap[ruleIndex] = models.CalculateRule{
  366. TrendsCalculateMappingList: trendsMappingList,
  367. EdbInfoList: edbInfoList,
  368. //EdbInfoIdBytes: edbInfoIdBytes,
  369. //Formula: formula,
  370. RuleType: v.RuleType,
  371. EndDate: v.EndDate,
  372. EdbInfoIdArr: v.EdbInfoIdArr,
  373. }
  374. case 17, 18:
  375. //关联的指标信息
  376. edbInfoList := make([]*models.EdbInfo, 0)
  377. edbInfoId, parseErr := strconv.Atoi(v.Value)
  378. if parseErr != nil {
  379. errMsg = "请填写正确的指标id"
  380. err = errors.New(errMsg)
  381. return
  382. }
  383. fromEdbInfo, tmpErr := models.GetEdbInfoById(edbInfoId)
  384. if tmpErr != nil {
  385. err = tmpErr
  386. if err.Error() == utils.ErrNoRow() {
  387. errMsg = "指标 " + strconv.Itoa(edbInfoId) + " 不存在"
  388. err = errors.New(errMsg)
  389. return
  390. }
  391. errMsg = "获取指标失败:Err:" + err.Error()
  392. err = errors.New(errMsg)
  393. return
  394. }
  395. edbInfoList = append(edbInfoList, fromEdbInfo)
  396. //总的 预测指标与所有相关联指标的关系表(不仅仅该条规则)
  397. fromEdbMap[edbInfoId] = edbInfoId
  398. calculateMappingItem = &models.EdbInfoCalculateMapping{
  399. EdbInfoCalculateMappingId: 0,
  400. EdbInfoId: 0,
  401. Source: edbInfo.Source,
  402. SourceName: edbInfo.SourceName,
  403. EdbCode: "",
  404. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  405. FromEdbCode: fromEdbInfo.EdbCode,
  406. FromEdbName: fromEdbInfo.EdbName,
  407. FromSource: fromEdbInfo.Source,
  408. FromSourceName: fromEdbInfo.SourceName,
  409. //FromTag: tmpEdbInfoId.FromTag,
  410. Sort: 1,
  411. CreateTime: time.Now(),
  412. ModifyTime: time.Now(),
  413. }
  414. calculateMappingList = append(calculateMappingList, calculateMappingItem)
  415. }
  416. tmpPredictEdbConf := &models.PredictEdbConf{
  417. PredictEdbInfoId: 0,
  418. SourceEdbInfoId: sourceEdbInfoId,
  419. RuleType: v.RuleType,
  420. //FixedValue: v.Value,
  421. Value: v.Value,
  422. //EndDate: ruleEndDate,
  423. ModifyTime: time.Now(),
  424. CreateTime: time.Now(),
  425. EndNum: v.EndNum,
  426. }
  427. if endDateType == 0 {
  428. tmpPredictEdbConf.EndDate = ruleEndDate
  429. }
  430. //todo 指标最终的截止日期的更新
  431. edbInfo.EndDate = v.EndDate
  432. predictEdbConfList = append(predictEdbConfList, tmpPredictEdbConf)
  433. }
  434. err, errMsg = models.AddPredictEdb(edbInfo, calculateMappingList, predictEdbConfList, calculateRuleMap)
  435. return
  436. }
  437. // EditPredictEdbInfo 编辑预测指标
  438. func EditPredictEdbInfo(edbInfoId, classifyId int, edbName, dataDateType string, endDateType int, ruleList []models.RuleConfig, minValue, maxValue float64, lang string) (edbInfo *models.EdbInfo, err error, errMsg string) {
  439. // 指标信息校验
  440. {
  441. edbInfo, err = models.GetEdbInfoById(edbInfoId)
  442. if err != nil && !utils.IsErrNoRow(err) {
  443. errMsg = "修改失败"
  444. err = errors.New("获取预测指标失败,Err:" + err.Error())
  445. return
  446. }
  447. if edbInfo == nil {
  448. errMsg = "找不到该预测指标"
  449. err = errors.New(errMsg)
  450. return
  451. }
  452. //必须是普通的指标
  453. if edbInfo.EdbInfoType != 1 {
  454. errMsg = "指标异常,不是预测指标"
  455. err = errors.New(errMsg)
  456. return
  457. }
  458. }
  459. var predictEdbConf *models.PredictEdbConf
  460. // 指标配置信息校验
  461. {
  462. // 查找该预测指标配置
  463. predictEdbConfList, tmpErr := models.GetPredictEdbConfListById(edbInfo.EdbInfoId)
  464. if tmpErr != nil && !utils.IsErrNoRow(tmpErr) {
  465. errMsg = "修改失败"
  466. err = errors.New("获取预测指标配置信息失败,Err:" + tmpErr.Error())
  467. return
  468. }
  469. if len(predictEdbConfList) == 0 {
  470. errMsg = "找不到该预测指标配置"
  471. err = errors.New(errMsg)
  472. return
  473. }
  474. predictEdbConf = predictEdbConfList[0]
  475. }
  476. // 根据指标名称和指标ID校验库中是否还存在其他同名指标
  477. existEdbName, err := CheckExistByEdbNameAndEdbInfoId(utils.PREDICT_EDB_INFO_TYPE, edbInfoId, edbName, lang)
  478. if err != nil {
  479. errMsg = "判断指标名称是否存在失败"
  480. err = errors.New("判断指标名称是否存在失败,Err:" + err.Error())
  481. return
  482. }
  483. if existEdbName {
  484. errMsg = "指标名称已存在,请重新填写"
  485. err = errors.New(errMsg)
  486. return
  487. }
  488. if dataDateType == `` {
  489. dataDateType = `自然日`
  490. }
  491. switch lang {
  492. case utils.EnLangVersion:
  493. edbInfo.EdbNameEn = edbName
  494. default:
  495. edbInfo.EdbName = edbName
  496. }
  497. edbInfo.EdbNameSource = edbName
  498. edbInfo.ClassifyId = classifyId
  499. edbInfo.MinValue = minValue
  500. edbInfo.MaxValue = maxValue
  501. edbInfo.DataDateType = dataDateType
  502. edbInfo.ModifyTime = time.Now()
  503. edbInfo.EndDateType = endDateType
  504. updateEdbInfoCol := []string{"EdbName", "EdbNameEn", "EdbNameSource", "ClassifyId", "EndDate", "MinValue", "MaxValue", "DataDateType", "ModifyTime", "EndDateType"}
  505. var sourceEdbInfo *models.EdbInfo
  506. // 来源指标信息校验
  507. {
  508. sourceEdbInfo, err = models.GetEdbInfoById(predictEdbConf.SourceEdbInfoId)
  509. if err != nil && !utils.IsErrNoRow(err) {
  510. errMsg = "新增失败"
  511. err = errors.New("获取来源指标失败,Err:" + err.Error())
  512. return
  513. }
  514. if sourceEdbInfo == nil {
  515. errMsg = "找不到该来源指标"
  516. err = errors.New(errMsg)
  517. return
  518. }
  519. //必须是普通的指标
  520. if sourceEdbInfo.EdbInfoType != 0 {
  521. errMsg = "来源指标异常,不是普通的指标"
  522. err = errors.New(errMsg)
  523. return
  524. }
  525. //if !utils.InArrayByStr([]string{"日度", "周度", "月度", "年度"}, sourceEdbInfo.Frequency) {
  526. // errMsg = "预测指标只支持选择日度、周度、月度、年度的指标"
  527. // err = errors.New(errMsg)
  528. // return
  529. //}
  530. }
  531. // 预测指标配置
  532. // 关联关系表
  533. calculateMappingList := make([]*models.EdbInfoCalculateMapping, 0)
  534. fromEdbMap := make(map[int]int)
  535. // 源指标关联关系表
  536. calculateMappingItem := &models.EdbInfoCalculateMapping{
  537. //EdbInfoCalculateMappingId: 0,
  538. EdbInfoId: edbInfoId,
  539. Source: edbInfo.Source,
  540. SourceName: edbInfo.SourceName,
  541. EdbCode: edbInfo.EdbCode,
  542. FromEdbInfoId: sourceEdbInfo.EdbInfoId,
  543. FromEdbCode: sourceEdbInfo.EdbCode,
  544. FromEdbName: sourceEdbInfo.EdbName,
  545. FromSource: sourceEdbInfo.Source,
  546. FromSourceName: sourceEdbInfo.SourceName,
  547. //FromTag: "",
  548. Sort: 1,
  549. CreateTime: time.Now(),
  550. ModifyTime: time.Now(),
  551. }
  552. fromEdbMap[sourceEdbInfo.EdbInfoId] = sourceEdbInfo.EdbInfoId
  553. calculateMappingList = append(calculateMappingList, calculateMappingItem)
  554. // 动态环差 计算列表
  555. calculateRuleMap := make(map[int]models.CalculateRule, 0)
  556. // 预测指标配置
  557. predictEdbConfList := make([]*models.PredictEdbConf, 0)
  558. for ruleIndex, v := range ruleList {
  559. var ruleEndDate time.Time
  560. if endDateType == 0 {
  561. // 预测指标配置
  562. ruleEndDate, err = time.ParseInLocation(utils.FormatDate, v.EndDate, time.Local)
  563. if err != nil {
  564. errMsg = "规则配置的截止日期异常,请重新填写"
  565. err = errors.New(errMsg)
  566. return
  567. }
  568. } else {
  569. if v.EndNum <= 0 {
  570. errMsg = "截止期数不正确,请输入大于等于1的整数"
  571. err = errors.New(errMsg)
  572. return
  573. }
  574. }
  575. //1:最新,2:固定值,3:同比,4:同差,5:环比,6:环差,7:N期移动均值,8:N期段线性外推值,9:动态环差,10:根据 给定终值后插值 规则获取预测数据,11:根据 季节性 规则获取预测数据,12:根据 移动平均同比 规则获取预测数据
  576. // 环比、环差、动态环差、季节性、移动平均同比不支持年度
  577. if sourceEdbInfo.Frequency == "年度" && utils.InArrayByInt([]int{5, 6, 11, 12}, v.RuleType) {
  578. errMsg = "环比、环差、动态环差、季节性、移动平均同比不支持年度指标"
  579. err = errors.New(errMsg)
  580. return
  581. }
  582. if v.RuleType == 16 && endDateType == 1 {
  583. errMsg = "年度值倒推不支持截止期数"
  584. err = errors.New(errMsg)
  585. return
  586. }
  587. switch v.RuleType {
  588. case 8: //N期段线性外推值
  589. valInt, tmpErr := strconv.Atoi(v.Value)
  590. if tmpErr != nil {
  591. errMsg = "N期段线性外推值的N值异常"
  592. err = errors.New(errMsg)
  593. return
  594. }
  595. if valInt <= 1 {
  596. errMsg = "N期段线性外推值的N值必须大于1"
  597. err = errors.New(errMsg)
  598. return
  599. }
  600. case 9: //9:动态环差
  601. if v.Value == "" {
  602. errMsg = "请填写计算规则"
  603. err = errors.New(errMsg)
  604. return
  605. }
  606. formula := v.Value
  607. formula = strings.Replace(formula, "(", "(", -1)
  608. formula = strings.Replace(formula, ")", ")", -1)
  609. formula = strings.Replace(formula, ",", ",", -1)
  610. formula = strings.Replace(formula, "。", ".", -1)
  611. formula = strings.Replace(formula, "%", "*0.01", -1)
  612. v.Value = formula
  613. //检验公式
  614. var formulaStr string
  615. var edbInfoIdBytes []string
  616. for _, tmpEdbInfoId := range v.EdbInfoIdArr {
  617. formulaStr += tmpEdbInfoId.FromTag + ","
  618. edbInfoIdBytes = append(edbInfoIdBytes, tmpEdbInfoId.FromTag)
  619. }
  620. formulaSlice, tErr := utils.CheckFormulaJson(formula)
  621. if tErr != nil {
  622. errMsg = "公式格式错误,请重新填写"
  623. err = errors.New(errMsg)
  624. return
  625. }
  626. for _, fm := range formulaSlice {
  627. formulaMap, e := utils.CheckFormula(fm)
  628. if e != nil {
  629. err = fmt.Errorf("公式错误,请重新填写")
  630. return
  631. }
  632. for _, f := range formulaMap {
  633. if !strings.Contains(formulaStr, f) {
  634. errMsg = "公式错误,请重新填写"
  635. err = errors.New(errMsg)
  636. return
  637. }
  638. }
  639. }
  640. //关联的指标信息
  641. edbInfoList := make([]*models.EdbInfo, 0)
  642. // 动态环差规则 关系表
  643. trendsMappingList := make([]*models.PredictEdbConfCalculateMapping, 0)
  644. for k, tmpEdbInfoId := range v.EdbInfoIdArr {
  645. fromEdbInfo, tmpErr := models.GetEdbInfoById(tmpEdbInfoId.EdbInfoId)
  646. if tmpErr != nil {
  647. err = tmpErr
  648. if err.Error() == utils.ErrNoRow() {
  649. errMsg = "指标 " + strconv.Itoa(tmpEdbInfoId.EdbInfoId) + " 不存在"
  650. err = errors.New(errMsg)
  651. return
  652. }
  653. errMsg = "获取指标失败:Err:" + err.Error()
  654. err = errors.New(errMsg)
  655. return
  656. }
  657. edbInfoList = append(edbInfoList, fromEdbInfo)
  658. //总的 预测指标与所有相关联指标的关系表(不仅仅该条规则)
  659. {
  660. if _, ok := fromEdbMap[tmpEdbInfoId.EdbInfoId]; !ok {
  661. fromEdbMap[tmpEdbInfoId.EdbInfoId] = tmpEdbInfoId.EdbInfoId
  662. calculateMappingItem := &models.EdbInfoCalculateMapping{
  663. EdbInfoCalculateMappingId: 0,
  664. EdbInfoId: edbInfoId,
  665. Source: utils.DATA_SOURCE_CALCULATE,
  666. SourceName: "指标运算",
  667. EdbCode: "",
  668. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  669. FromEdbCode: fromEdbInfo.EdbCode,
  670. FromEdbName: fromEdbInfo.EdbName,
  671. FromSource: fromEdbInfo.Source,
  672. FromSourceName: fromEdbInfo.SourceName,
  673. //FromTag: tmpEdbInfoId.FromTag,
  674. Sort: k + 1,
  675. CreateTime: time.Now(),
  676. ModifyTime: time.Now(),
  677. }
  678. calculateMappingList = append(calculateMappingList, calculateMappingItem)
  679. }
  680. }
  681. // 动态环差规则 关系表
  682. tmpPredictEdbConfCalculateMapping := &models.PredictEdbConfCalculateMapping{
  683. //PredictEdbConfCalculateMappingId: 0,
  684. EdbInfoId: edbInfoId,
  685. ConfigId: 0,
  686. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  687. FromEdbCode: fromEdbInfo.EdbCode,
  688. FromEdbName: fromEdbInfo.EdbName,
  689. FromSource: fromEdbInfo.Source,
  690. FromSourceName: fromEdbInfo.SourceName,
  691. FromTag: tmpEdbInfoId.FromTag,
  692. Sort: k + 1,
  693. CreateTime: time.Now(),
  694. ModifyTime: time.Now(),
  695. }
  696. trendsMappingList = append(trendsMappingList, tmpPredictEdbConfCalculateMapping)
  697. }
  698. for _, f := range formulaSlice {
  699. formulaMap, e := utils.CheckFormula(f)
  700. if e != nil {
  701. err = fmt.Errorf("公式错误,请重新填写")
  702. return
  703. }
  704. //预先计算,判断公式是否正常
  705. ok, _ := models.CheckFormula2(edbInfoList, formulaMap, f, edbInfoIdBytes)
  706. if !ok {
  707. errMsg = "生成计算指标失败,请使用正确的计算公式"
  708. err = errors.New(errMsg)
  709. return
  710. }
  711. }
  712. calculateRuleMap[ruleIndex] = models.CalculateRule{
  713. TrendsCalculateMappingList: trendsMappingList,
  714. EdbInfoList: edbInfoList,
  715. EdbInfoIdBytes: edbInfoIdBytes,
  716. Formula: formula,
  717. RuleType: v.RuleType,
  718. EndDate: v.EndDate,
  719. EdbInfoIdArr: v.EdbInfoIdArr,
  720. }
  721. case 14: //14:根据 一元线性拟合 规则获取预测数据
  722. if v.Value == "" {
  723. errMsg = "请填写一元线性拟合规则"
  724. err = errors.New(errMsg)
  725. return
  726. }
  727. //关联的指标信息
  728. edbInfoList := make([]*models.EdbInfo, 0)
  729. // 动态环差规则 关系表
  730. trendsMappingList := make([]*models.PredictEdbConfCalculateMapping, 0)
  731. for k, tmpEdbInfoId := range v.EdbInfoIdArr {
  732. fromEdbInfo, tmpErr := models.GetEdbInfoById(tmpEdbInfoId.EdbInfoId)
  733. if tmpErr != nil {
  734. err = tmpErr
  735. if err.Error() == utils.ErrNoRow() {
  736. errMsg = "指标 " + strconv.Itoa(tmpEdbInfoId.EdbInfoId) + " 不存在"
  737. err = errors.New(errMsg)
  738. return
  739. }
  740. errMsg = "获取指标失败:Err:" + err.Error()
  741. err = errors.New(errMsg)
  742. return
  743. }
  744. edbInfoList = append(edbInfoList, fromEdbInfo)
  745. //总的 预测指标与所有相关联指标的关系表(不仅仅该条规则)
  746. {
  747. if _, ok := fromEdbMap[tmpEdbInfoId.EdbInfoId]; !ok {
  748. fromEdbMap[tmpEdbInfoId.EdbInfoId] = tmpEdbInfoId.EdbInfoId
  749. tmpCalculateMappingItem := &models.EdbInfoCalculateMapping{
  750. EdbInfoCalculateMappingId: 0,
  751. EdbInfoId: 0,
  752. Source: utils.DATA_SOURCE_CALCULATE,
  753. SourceName: "指标运算",
  754. EdbCode: "",
  755. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  756. FromEdbCode: fromEdbInfo.EdbCode,
  757. FromEdbName: fromEdbInfo.EdbName,
  758. FromSource: fromEdbInfo.Source,
  759. FromSourceName: fromEdbInfo.SourceName,
  760. //FromTag: tmpEdbInfoId.FromTag,
  761. Sort: k + 1,
  762. CreateTime: time.Now(),
  763. ModifyTime: time.Now(),
  764. }
  765. calculateMappingList = append(calculateMappingList, tmpCalculateMappingItem)
  766. }
  767. }
  768. // 动态环差规则 关系表
  769. tmpPredictEdbConfCalculateMapping := &models.PredictEdbConfCalculateMapping{
  770. //PredictEdbConfCalculateMappingId: 0,
  771. EdbInfoId: 0,
  772. ConfigId: 0,
  773. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  774. FromEdbCode: fromEdbInfo.EdbCode,
  775. FromEdbName: fromEdbInfo.EdbName,
  776. FromSource: fromEdbInfo.Source,
  777. FromSourceName: fromEdbInfo.SourceName,
  778. FromTag: tmpEdbInfoId.FromTag,
  779. Sort: k + 1,
  780. CreateTime: time.Now(),
  781. ModifyTime: time.Now(),
  782. }
  783. trendsMappingList = append(trendsMappingList, tmpPredictEdbConfCalculateMapping)
  784. }
  785. // todo
  786. calculateRuleMap[ruleIndex] = models.CalculateRule{
  787. TrendsCalculateMappingList: trendsMappingList,
  788. EdbInfoList: edbInfoList,
  789. //EdbInfoIdBytes: edbInfoIdBytes,
  790. //Formula: formula,
  791. RuleType: v.RuleType,
  792. EndDate: v.EndDate,
  793. EdbInfoIdArr: v.EdbInfoIdArr,
  794. }
  795. }
  796. tmpPredictEdbConf := &models.PredictEdbConf{
  797. PredictEdbInfoId: edbInfoId,
  798. SourceEdbInfoId: sourceEdbInfo.EdbInfoId,
  799. RuleType: v.RuleType,
  800. //FixedValue: v.Value,
  801. Value: v.Value,
  802. EndDate: ruleEndDate,
  803. EndNum: v.EndNum,
  804. ModifyTime: time.Now(),
  805. CreateTime: time.Now(),
  806. }
  807. if endDateType == 0 {
  808. tmpPredictEdbConf.EndDate = ruleEndDate
  809. }
  810. // todo
  811. edbInfo.EndDate = v.EndDate
  812. predictEdbConfList = append(predictEdbConfList, tmpPredictEdbConf)
  813. }
  814. err, errMsg = models.EditPredictEdb(edbInfo, updateEdbInfoCol, calculateMappingList, predictEdbConfList, calculateRuleMap)
  815. return
  816. }
  817. // RefreshPredictEdbInfo 更新基础预测指标规则中的动态数据
  818. func RefreshPredictEdbInfo(edbInfoId int) (edbInfo *models.EdbInfo, err error, errMsg string) {
  819. // 指标信息校验
  820. {
  821. edbInfo, err = models.GetEdbInfoById(edbInfoId)
  822. if err != nil && !utils.IsErrNoRow(err) {
  823. errMsg = "刷新失败"
  824. err = errors.New("获取预测指标失败,Err:" + err.Error())
  825. return
  826. }
  827. if edbInfo == nil {
  828. errMsg = "找不到该预测指标"
  829. err = nil
  830. return
  831. }
  832. //必须是普通的指标
  833. if edbInfo.EdbInfoType != 1 {
  834. errMsg = "指标异常,不是预测指标"
  835. return
  836. }
  837. }
  838. // 配置 与 指标的 关联关系表
  839. list, err := models.GetPredictEdbConfCalculateMappingListByEdbInfoId(edbInfoId)
  840. if err != nil {
  841. return
  842. }
  843. // 没有关联指标,不需要刷新
  844. if len(list) <= 0 {
  845. return
  846. }
  847. // 配置关联的指标信息
  848. predictEdbConfCalculateMappingListMap := make(map[int][]*models.PredictEdbConfCalculateMapping)
  849. configIdList := make([]int, 0) //关联配置id
  850. edbInfoIdList := make([]int, 0) //关联指标配置id
  851. edbInfoIdMap := make(map[int]int, 0) //关联指标配置map
  852. for _, v := range list {
  853. configList, ok := predictEdbConfCalculateMappingListMap[v.ConfigId]
  854. if !ok {
  855. configList = make([]*models.PredictEdbConfCalculateMapping, 0)
  856. configIdList = append(configIdList, v.ConfigId)
  857. }
  858. if _, ok := edbInfoIdMap[v.FromEdbInfoId]; !ok {
  859. edbInfoIdList = append(edbInfoIdList, v.FromEdbInfoId)
  860. }
  861. configList = append(configList, v)
  862. predictEdbConfCalculateMappingListMap[v.ConfigId] = configList
  863. }
  864. predictEdbConfList, err := models.GetPredictEdbConfListByConfigIdList(configIdList)
  865. if err != nil {
  866. errMsg = "刷新失败"
  867. err = errors.New("获取预测指标配置信息失败,Err:" + err.Error())
  868. return
  869. }
  870. if len(predictEdbConfList) == 0 {
  871. errMsg = "找不到该预测指标配置"
  872. err = nil
  873. return
  874. }
  875. // 指标信息
  876. edbInfoList, err := models.GetEdbInfoByIdList(edbInfoIdList)
  877. if err != nil {
  878. err = errors.New("获取关联指标失败,Err:" + err.Error())
  879. return
  880. }
  881. // 指标信息map
  882. edbInfoListMap := make(map[int]*models.EdbInfo)
  883. for _, v := range edbInfoList {
  884. edbInfoListMap[v.EdbInfoId] = v
  885. }
  886. predictEdbConfAndDataList := make([]*models.PredictEdbConfAndData, 0)
  887. // 刷新所有的规则
  888. for _, v := range predictEdbConfList {
  889. // 每次规则计算的时候,产生的临时数据
  890. resultDataList := make([]*models.EdbInfoSearchData, 0)
  891. switch v.RuleType {
  892. case 9: //动态环差值
  893. if v.Value == "" {
  894. errMsg = "请填写计算规则"
  895. return
  896. }
  897. // todo 动态环差的空值类型处理
  898. formula := v.Value
  899. // 动态环差规则 关系表
  900. trendsMappingList := predictEdbConfCalculateMappingListMap[v.ConfigId]
  901. // 关联标签
  902. edbInfoIdArr := make([]models.EdbInfoFromTag, 0)
  903. //关联的指标信息
  904. edbInfoList := make([]*models.EdbInfo, 0)
  905. for _, trendsMapping := range trendsMappingList {
  906. tmpEdbInfo, ok := edbInfoListMap[trendsMapping.FromEdbInfoId]
  907. if ok {
  908. edbInfoList = append(edbInfoList, tmpEdbInfo)
  909. }
  910. // 关联标签
  911. edbInfoIdArr = append(edbInfoIdArr, models.EdbInfoFromTag{
  912. EdbInfoId: trendsMapping.FromEdbInfoId,
  913. FromTag: trendsMapping.FromTag,
  914. })
  915. }
  916. //检验公式
  917. var formulaStr string
  918. var edbInfoIdBytes []string
  919. for _, tmpEdbInfoId := range edbInfoIdArr {
  920. formulaStr += tmpEdbInfoId.FromTag + ","
  921. edbInfoIdBytes = append(edbInfoIdBytes, tmpEdbInfoId.FromTag)
  922. }
  923. formulaSlice, tErr := utils.CheckFormulaJson(formula)
  924. if tErr != nil {
  925. errMsg = "公式格式错误,请重新填写"
  926. err = errors.New(errMsg)
  927. return
  928. }
  929. for _, fm := range formulaSlice {
  930. formulaMap, e := utils.CheckFormula(fm)
  931. if e != nil {
  932. err = fmt.Errorf("公式错误,请重新填写")
  933. return
  934. }
  935. for _, f := range formulaMap {
  936. if !strings.Contains(formulaStr, f) {
  937. errMsg = "公式错误,请重新填写"
  938. err = errors.New(errMsg)
  939. return
  940. }
  941. }
  942. //预先计算,判断公式是否正常
  943. ok, _ := models.CheckFormula2(edbInfoList, formulaMap, fm, edbInfoIdBytes)
  944. if !ok {
  945. errMsg = "生成计算指标失败,请使用正确的计算公式"
  946. return
  947. }
  948. }
  949. rule := models.CalculateRule{
  950. EdbInfoId: v.PredictEdbInfoId,
  951. ConfigId: v.ConfigId,
  952. TrendsCalculateMappingList: trendsMappingList,
  953. EdbInfoList: edbInfoList,
  954. EdbInfoIdBytes: edbInfoIdBytes,
  955. Formula: formula,
  956. RuleType: v.RuleType,
  957. EndDate: v.EndDate.Format(utils.FormatDate),
  958. EdbInfoIdArr: edbInfoIdArr,
  959. }
  960. resultDataList, err = models.RefreshCalculateByRuleBy9(rule)
  961. if err != nil {
  962. return
  963. }
  964. case 14: //14:根据 一元线性拟合 规则获取预测数据
  965. if v.Value == "" {
  966. errMsg = "一元线性拟合规则信息未配置"
  967. return
  968. }
  969. err, errMsg = models.RefreshCalculateByRuleByLineNh(*edbInfo, predictEdbConfAndDataList, *v)
  970. if err != nil {
  971. return
  972. }
  973. }
  974. // 规则配置(含数据)
  975. tmpPredictEdbConfAndData := &models.PredictEdbConfAndData{
  976. ConfigId: 0,
  977. PredictEdbInfoId: 0,
  978. SourceEdbInfoId: v.SourceEdbInfoId,
  979. RuleType: v.RuleType,
  980. FixedValue: v.FixedValue,
  981. Value: v.Value,
  982. EndDate: v.EndDate,
  983. ModifyTime: v.ModifyTime,
  984. CreateTime: v.CreateTime,
  985. DataList: resultDataList,
  986. }
  987. predictEdbConfAndDataList = append(predictEdbConfAndDataList, tmpPredictEdbConfAndData)
  988. }
  989. return
  990. }
  991. // checkExistByEdbName
  992. // @Description: 根据指标名称校验该指标是否存在库中
  993. // @author: Roc
  994. // @datetime 2024-04-18 14:58:52
  995. // @param edbInfoType int
  996. // @param edbName string
  997. // @param lang string
  998. // @return has bool
  999. // @return err error
  1000. func checkExistByEdbName(edbInfoType int, edbName, lang string) (has bool, err error) {
  1001. var condition string
  1002. var pars []interface{}
  1003. condition += " AND edb_info_type=? "
  1004. pars = append(pars, edbInfoType)
  1005. switch lang {
  1006. case utils.EnLangVersion:
  1007. condition += " AND edb_name_en = ? "
  1008. default:
  1009. condition += " AND edb_name=? "
  1010. }
  1011. pars = append(pars, edbName)
  1012. count, err := models.GetEdbInfoCountByCondition(condition, pars)
  1013. if err != nil {
  1014. return
  1015. }
  1016. if count > 0 {
  1017. has = true
  1018. return
  1019. }
  1020. return
  1021. }
  1022. // checkExistByEdbNameAndEdbInfoId
  1023. // @Description: 根据指标名称和指标ID校验库中是否还存在其他同名指标
  1024. // @author: Roc
  1025. // @datetime 2024-04-18 15:00:19
  1026. // @param edbInfoType int
  1027. // @param edbInfoId int
  1028. // @param edbName string
  1029. // @param lang string
  1030. // @return has bool
  1031. // @return err error
  1032. func checkExistByEdbNameAndEdbInfoId(edbInfoType, edbInfoId int, edbName, lang string) (has bool, err error) {
  1033. var condition string
  1034. var pars []interface{}
  1035. condition += " AND edb_info_type=? "
  1036. pars = append(pars, edbInfoType)
  1037. condition += " AND edb_info_id<>? "
  1038. pars = append(pars, edbInfoId)
  1039. switch lang {
  1040. case utils.EnLangVersion:
  1041. condition += " AND edb_name_en = ? "
  1042. default:
  1043. condition += " AND edb_name=? "
  1044. }
  1045. pars = append(pars, edbName)
  1046. count, err := models.GetEdbInfoCountByCondition(condition, pars)
  1047. if err != nil {
  1048. return
  1049. }
  1050. if count > 0 {
  1051. has = true
  1052. return
  1053. }
  1054. return
  1055. }
  1056. // CheckExistByEdbNameAndEdbInfoId
  1057. // @Description: 根据指标名称和指标ID校验库中是否还存在其他同名指标
  1058. // @author: Roc
  1059. // @datetime 2024-04-18 15:01:44
  1060. // @param edbInfoType int
  1061. // @param edbInfoId int
  1062. // @param edbName string
  1063. // @param lang string
  1064. // @return has bool
  1065. // @return err error
  1066. func CheckExistByEdbNameAndEdbInfoId(edbInfoType, edbInfoId int, edbName, lang string) (has bool, err error) {
  1067. // 指标没有入库的情况
  1068. if edbInfoId == 0 {
  1069. return checkExistByEdbName(edbInfoType, edbName, lang)
  1070. }
  1071. //指标已经入库的情况
  1072. return checkExistByEdbNameAndEdbInfoId(edbInfoType, edbInfoId, edbName, lang)
  1073. }
  1074. // AddStaticPredictEdbInfo 新增静态指标数据
  1075. func AddStaticPredictEdbInfo(sourceEdbInfoId, classifyId int, edbName, frequency, unit string, sysUserId int, sysUserName, lang string) (edbInfo *models.EdbInfo, err error, errMsg string) {
  1076. var sourceEdbInfo *models.EdbInfo
  1077. // 来源指标信息校验
  1078. {
  1079. sourceEdbInfo, err = models.GetEdbInfoById(sourceEdbInfoId)
  1080. if err != nil && !utils.IsErrNoRow(err) {
  1081. errMsg = "新增失败"
  1082. err = errors.New("获取来源指标失败,Err:" + err.Error())
  1083. return
  1084. }
  1085. if sourceEdbInfo == nil {
  1086. errMsg = "找不到该来源指标"
  1087. err = errors.New(errMsg)
  1088. return
  1089. }
  1090. }
  1091. var classifyInfo *models.EdbClassify
  1092. // 来源分类信息校验
  1093. {
  1094. classifyInfo, err = models.GetEdbClassifyById(classifyId)
  1095. if err != nil && !utils.IsErrNoRow(err) {
  1096. errMsg = "新增失败"
  1097. err = errors.New("获取预测指标分类失败,Err:" + err.Error())
  1098. return
  1099. }
  1100. if classifyInfo == nil {
  1101. errMsg = "找不到该预测指标分类"
  1102. err = errors.New(errMsg)
  1103. return
  1104. }
  1105. //必须是预测指标分类
  1106. if classifyInfo.ClassifyType != 1 {
  1107. errMsg = "预测指标分类异常,不是预测指标分类"
  1108. err = errors.New(errMsg)
  1109. return
  1110. }
  1111. }
  1112. edbName = strings.Trim(edbName, " ")
  1113. edbCode := sourceEdbInfo.EdbCode + "_" + time.Now().Format(utils.FormatShortDateTimeUnSpace)
  1114. // 根据指标名称和指标ID校验库中是否还存在其他同名指标
  1115. existEdbName, err := CheckExistByEdbNameAndEdbInfoId(utils.PREDICT_EDB_INFO_TYPE, 0, edbName, lang)
  1116. if err != nil {
  1117. errMsg = "判断指标名称是否存在失败"
  1118. err = errors.New("判断指标名称是否存在失败,Err:" + err.Error())
  1119. return
  1120. }
  1121. if existEdbName {
  1122. errMsg = "指标名称已存在,请重新填写"
  1123. err = errors.New(errMsg)
  1124. return
  1125. }
  1126. timestamp := strconv.FormatInt(time.Now().UnixNano(), 10)
  1127. edbInfo = &models.EdbInfo{
  1128. //EdbInfoId: 0,
  1129. EdbInfoType: sourceEdbInfo.EdbInfoType,
  1130. SourceName: sourceEdbInfo.SourceName,
  1131. Source: sourceEdbInfo.Source,
  1132. EdbCode: edbCode,
  1133. EdbName: edbName,
  1134. EdbNameSource: edbName,
  1135. Frequency: frequency,
  1136. Unit: unit,
  1137. StartDate: sourceEdbInfo.StartDate,
  1138. EndDate: sourceEdbInfo.EndDate,
  1139. ClassifyId: classifyId,
  1140. SysUserId: sysUserId,
  1141. SysUserRealName: sysUserName,
  1142. UniqueCode: utils.MD5(utils.DATA_PREFIX + "_" + timestamp),
  1143. CreateTime: time.Now(),
  1144. ModifyTime: time.Now(),
  1145. MinValue: sourceEdbInfo.MinValue,
  1146. MaxValue: sourceEdbInfo.MaxValue,
  1147. EndValue: sourceEdbInfo.EndValue,
  1148. CalculateFormula: sourceEdbInfo.CalculateFormula,
  1149. EdbType: sourceEdbInfo.EdbType,
  1150. //Sort: sourceEdbInfo.,
  1151. LatestDate: sourceEdbInfo.LatestDate,
  1152. LatestValue: sourceEdbInfo.LatestValue,
  1153. MoveType: sourceEdbInfo.MoveType,
  1154. MoveFrequency: sourceEdbInfo.MoveFrequency,
  1155. NoUpdate: sourceEdbInfo.NoUpdate,
  1156. IsUpdate: sourceEdbInfo.IsUpdate,
  1157. ServerUrl: "",
  1158. EdbNameEn: edbName,
  1159. UnitEn: sourceEdbInfo.UnitEn,
  1160. DataDateType: sourceEdbInfo.DataDateType,
  1161. Sort: models.GetAddEdbMaxSortByClassifyId(classifyId, utils.PREDICT_EDB_INFO_TYPE),
  1162. IsStaticData: 1,
  1163. }
  1164. // 关联关系表
  1165. calculateMappingList := make([]*models.EdbInfoCalculateMapping, 0)
  1166. fromEdbMap := make(map[int]int)
  1167. // 源指标关联关系表
  1168. calculateMappingItem := &models.EdbInfoCalculateMapping{
  1169. //EdbInfoCalculateMappingId: 0,
  1170. //EdbInfoId: 0,
  1171. Source: edbInfo.Source,
  1172. SourceName: edbInfo.SourceName,
  1173. EdbCode: edbInfo.EdbCode,
  1174. FromEdbInfoId: sourceEdbInfo.EdbInfoId,
  1175. FromEdbCode: sourceEdbInfo.EdbCode,
  1176. FromEdbName: sourceEdbInfo.EdbName,
  1177. FromSource: sourceEdbInfo.Source,
  1178. FromSourceName: sourceEdbInfo.SourceName,
  1179. //FromTag: "",
  1180. Sort: 1,
  1181. CreateTime: time.Now(),
  1182. ModifyTime: time.Now(),
  1183. }
  1184. fromEdbMap[sourceEdbInfoId] = sourceEdbInfoId
  1185. calculateMappingList = append(calculateMappingList, calculateMappingItem)
  1186. newPredictEdbConfList := make([]*models.PredictEdbConf, 0)
  1187. //查询原先的预测指标配置项
  1188. if sourceEdbInfo.EdbType == 1 {
  1189. // 查找该预测指标配置
  1190. predictEdbConfList, tmpErr := models.GetPredictEdbConfListById(sourceEdbInfo.EdbInfoId)
  1191. if tmpErr != nil && !utils.IsErrNoRow(tmpErr) {
  1192. errMsg = "获取预测指标配置信息失败"
  1193. err = errors.New("获取预测指标配置信息失败,Err:" + tmpErr.Error())
  1194. return
  1195. }
  1196. if len(predictEdbConfList) > 0 {
  1197. // 遍历
  1198. for _, v := range predictEdbConfList {
  1199. tmpPredictEdbConf := &models.PredictEdbConf{
  1200. PredictEdbInfoId: 0,
  1201. SourceEdbInfoId: sourceEdbInfoId,
  1202. RuleType: v.RuleType,
  1203. FixedValue: v.FixedValue,
  1204. Value: v.Value,
  1205. EmptyType: v.EmptyType,
  1206. MaxEmptyType: v.MaxEmptyType,
  1207. EndDate: v.EndDate,
  1208. ModifyTime: time.Now(),
  1209. CreateTime: time.Now(),
  1210. }
  1211. newPredictEdbConfList = append(newPredictEdbConfList, tmpPredictEdbConf)
  1212. }
  1213. }
  1214. }
  1215. err, errMsg = models.AddPredictStaticEdb(edbInfo, sourceEdbInfo, calculateMappingList, newPredictEdbConfList)
  1216. return
  1217. }