predict_edb_info_rule.go 72 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978
  1. package models
  2. import (
  3. "encoding/json"
  4. "errors"
  5. "eta/eta_index_lib/utils"
  6. "fmt"
  7. "github.com/nosixtools/solarlunar"
  8. "github.com/shopspring/decimal"
  9. "math"
  10. "strconv"
  11. "strings"
  12. "time"
  13. )
  14. // GetChartPredictEdbInfoDataListByRule1 根据规则1获取预测数据
  15. func GetChartPredictEdbInfoDataListByRule1(edbInfoId int, dataValue float64, dayList []time.Time, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData) {
  16. newPredictEdbInfoData = predictEdbInfoData
  17. //获取后面的预测数据
  18. predictEdbInfoData = make([]*EdbInfoSearchData, 0)
  19. for k, v := range dayList {
  20. newPredictEdbInfoData = append(newPredictEdbInfoData, &EdbInfoSearchData{
  21. EdbDataId: edbInfoId + 10000000000 + k,
  22. DataTime: v.Format(utils.FormatDate),
  23. Value: dataValue,
  24. })
  25. existMap[v.Format(utils.FormatDate)] = dataValue
  26. }
  27. return
  28. }
  29. // GetChartPredictEdbInfoDataListByRuleTb 根据同比值规则获取预测数据
  30. // 2.1 同比: 在未来某一个时间段内,给定一个固定的同比增速a,用去年同期值X乘以同比增速(1+a),得到预测值Y=X(1+a)
  31. // 例: 今年1-3月值,100,100,120。给定同比增速a=0.1,则明年1-3月预测值为: 100*1.1=110,100*1.1=110,120*1.1=132。
  32. func GetChartPredictEdbInfoDataListByRuleTb(edbInfoId int, tbValue float64, dayList []time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  33. allDataList := make([]*EdbInfoSearchData, 0)
  34. allDataList = append(allDataList, realPredictEdbInfoData...)
  35. allDataList = append(allDataList, predictEdbInfoData...)
  36. newPredictEdbInfoData = predictEdbInfoData
  37. index := len(allDataList)
  38. //获取后面的预测数据
  39. predictEdbInfoData = make([]*EdbInfoSearchData, 0)
  40. for k, currentDate := range dayList {
  41. tmpData := &EdbInfoSearchData{
  42. EdbDataId: edbInfoId + 10000000000 + index + k,
  43. DataTime: currentDate.Format(utils.FormatDate),
  44. //Value: dataValue,
  45. }
  46. var val float64
  47. var calculateStatus bool //计算结果
  48. //currentItem := existMap[av]
  49. //上一年的日期
  50. preDate := currentDate.AddDate(-1, 0, 0)
  51. preDateStr := preDate.Format(utils.FormatDate)
  52. if preValue, ok := existMap[preDateStr]; ok { //上一年同期找到
  53. val = PredictTbzDiv(preValue, tbValue)
  54. calculateStatus = true
  55. } else {
  56. switch frequency {
  57. case "月度":
  58. //向上和向下,各找一个月
  59. nextDateDay := preDate
  60. preDateDay := preDate
  61. for i := 0; i <= 35; i++ {
  62. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  63. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  64. val = PredictTbzDiv(preValue, tbValue)
  65. calculateStatus = true
  66. break
  67. } else {
  68. preDateDayStr := preDateDay.Format(utils.FormatDate)
  69. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  70. val = PredictTbzDiv(preValue, tbValue)
  71. calculateStatus = true
  72. break
  73. }
  74. }
  75. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  76. preDateDay = preDateDay.AddDate(0, 0, -1)
  77. }
  78. case "季度", "年度":
  79. if preValue, ok := existMap[preDateStr]; ok { //上一年同期->下一个月找到
  80. val = PredictTbzDiv(preValue, tbValue)
  81. calculateStatus = true
  82. break
  83. }
  84. default:
  85. nextDateDay := preDate
  86. preDateDay := preDate
  87. for i := 0; i < 35; i++ {
  88. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  89. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  90. val = PredictTbzDiv(preValue, tbValue)
  91. calculateStatus = true
  92. break
  93. } else {
  94. preDateDayStr := preDateDay.Format(utils.FormatDate)
  95. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  96. val = PredictTbzDiv(preValue, tbValue)
  97. calculateStatus = true
  98. break
  99. } else {
  100. //fmt.Println("pre not find:", preDateStr, "i:", i)
  101. }
  102. }
  103. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  104. preDateDay = preDateDay.AddDate(0, 0, -1)
  105. }
  106. }
  107. }
  108. if calculateStatus {
  109. tmpData.Value = val
  110. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  111. allDataList = append(allDataList, tmpData)
  112. existMap[tmpData.DataTime] = val
  113. // 最大最小值
  114. if val < minValue {
  115. minValue = val
  116. }
  117. if val > maxValue {
  118. maxValue = val
  119. }
  120. }
  121. }
  122. return
  123. }
  124. // PredictTbzDiv 同比值计算
  125. // @params a float64 去年同期值
  126. // @params b float64 固定同比增速
  127. func PredictTbzDiv(a, b float64) (result float64) {
  128. // 去年同期值
  129. af := decimal.NewFromFloat(a)
  130. // 同比增速
  131. bf := decimal.NewFromFloat(b)
  132. // 默认1
  133. cf := decimal.NewFromFloat(1)
  134. // 总增速
  135. val := bf.Add(cf)
  136. // 计算
  137. result, _ = val.Mul(af).Round(4).Float64()
  138. return
  139. }
  140. // GetChartPredictEdbInfoDataListByRuleTc 根据同差值规则获取预测数据
  141. // 2.2 同差: 在未来某一个时间段内,给定一个固定的同比增加值a,用去年同期值X加上同比增加值A,得到预测值Y=X+a
  142. // 例: 今年1-3月值,100,100,120。给定同比增加值a=10,则明年1-3月预测值为: 100+10=110,100+10=110,120+10=130
  143. func GetChartPredictEdbInfoDataListByRuleTc(edbInfoId int, tcValue float64, dayList []time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  144. allDataList := make([]*EdbInfoSearchData, 0)
  145. allDataList = append(allDataList, realPredictEdbInfoData...)
  146. allDataList = append(allDataList, predictEdbInfoData...)
  147. newPredictEdbInfoData = predictEdbInfoData
  148. index := len(allDataList)
  149. //获取后面的预测数据
  150. predictEdbInfoData = make([]*EdbInfoSearchData, 0)
  151. for k, currentDate := range dayList {
  152. tmpData := &EdbInfoSearchData{
  153. EdbDataId: edbInfoId + 10000000000 + index + k,
  154. DataTime: currentDate.Format(utils.FormatDate),
  155. //Value: dataValue,
  156. }
  157. var val float64
  158. var calculateStatus bool //计算结果
  159. //currentItem := existMap[av]
  160. //上一年的日期
  161. preDate := currentDate.AddDate(-1, 0, 0)
  162. preDateStr := preDate.Format(utils.FormatDate)
  163. if preValue, ok := existMap[preDateStr]; ok { //上一年同期找到
  164. val = PredictTczDiv(preValue, tcValue)
  165. calculateStatus = true
  166. } else {
  167. switch frequency {
  168. case "月度":
  169. //向上和向下,各找一个月
  170. nextDateDay := preDate
  171. preDateDay := preDate
  172. for i := 0; i <= 35; i++ {
  173. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  174. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  175. val = PredictTczDiv(preValue, tcValue)
  176. calculateStatus = true
  177. break
  178. } else {
  179. preDateDayStr := preDateDay.Format(utils.FormatDate)
  180. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  181. val = PredictTczDiv(preValue, tcValue)
  182. calculateStatus = true
  183. break
  184. }
  185. }
  186. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  187. preDateDay = preDateDay.AddDate(0, 0, -1)
  188. }
  189. case "季度", "年度":
  190. if preValue, ok := existMap[preDateStr]; ok { //上一年同期->下一个月找到
  191. val = PredictTczDiv(preValue, tcValue)
  192. calculateStatus = true
  193. break
  194. }
  195. default:
  196. nextDateDay := preDate
  197. preDateDay := preDate
  198. for i := 0; i < 35; i++ {
  199. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  200. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  201. val = PredictTczDiv(preValue, tcValue)
  202. calculateStatus = true
  203. break
  204. } else {
  205. preDateDayStr := preDateDay.Format(utils.FormatDate)
  206. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  207. val = PredictTczDiv(preValue, tcValue)
  208. calculateStatus = true
  209. break
  210. } else {
  211. //fmt.Println("pre not find:", preDateStr, "i:", i)
  212. }
  213. }
  214. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  215. preDateDay = preDateDay.AddDate(0, 0, -1)
  216. }
  217. }
  218. }
  219. if calculateStatus {
  220. tmpData.Value = val
  221. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  222. allDataList = append(allDataList, tmpData)
  223. existMap[tmpData.DataTime] = val
  224. // 最大最小值
  225. if val < minValue {
  226. minValue = val
  227. }
  228. if val > maxValue {
  229. maxValue = val
  230. }
  231. }
  232. }
  233. return
  234. }
  235. // PredictTczDiv 环差值计算
  236. // @params a float64 上一期值
  237. // @params b float64 固定的环比增加值
  238. func PredictTczDiv(a, b float64) (result float64) {
  239. if b != 0 {
  240. // 上一期值
  241. af := decimal.NewFromFloat(a)
  242. // 固定的环比增加值
  243. bf := decimal.NewFromFloat(b)
  244. // 计算
  245. result, _ = af.Add(bf).Round(4).Float64()
  246. } else {
  247. result = 0
  248. }
  249. return
  250. }
  251. // GetChartPredictEdbInfoDataListByRuleHb 根据环比值规则获取预测数据
  252. // 环比:在未来某一个时间段内,给定一个固定的环比增速a,用上一期值X乘以环比增速(1+a),得到预测值Y=X(1+a)
  253. // 例: 最近1期值为100,给定环比增速a=0.2,则未来3期预测值为: 100*1.2=120,120*1.2=144,144*1.2=172.8
  254. func GetChartPredictEdbInfoDataListByRuleHb(edbInfoId int, hbValue float64, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  255. allDataList := make([]*EdbInfoSearchData, 0)
  256. allDataList = append(allDataList, realPredictEdbInfoData...)
  257. allDataList = append(allDataList, predictEdbInfoData...)
  258. newPredictEdbInfoData = predictEdbInfoData
  259. index := len(allDataList)
  260. //获取后面的预测数据
  261. for k, currentDate := range dayList {
  262. tmpK := index + k - 1 //上1期的值
  263. // 环比值计算
  264. val := PredictHbzDiv(allDataList[tmpK].Value, hbValue)
  265. currentDateStr := currentDate.Format(utils.FormatDate)
  266. tmpData := &EdbInfoSearchData{
  267. EdbDataId: edbInfoId + 10000000000 + index + k,
  268. DataTime: currentDateStr,
  269. Value: val,
  270. }
  271. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  272. allDataList = append(allDataList, tmpData)
  273. existMap[currentDateStr] = val
  274. // 最大最小值
  275. if val < minValue {
  276. minValue = val
  277. }
  278. if val > maxValue {
  279. maxValue = val
  280. }
  281. }
  282. return
  283. }
  284. // PredictHbzDiv 环比值计算
  285. // @params a float64 上一期值
  286. // @params b float64 固定的环比增速
  287. func PredictHbzDiv(a, b float64) (result float64) {
  288. if b != 0 {
  289. // 上一期值
  290. af := decimal.NewFromFloat(a)
  291. // 固定的环比增速
  292. bf := decimal.NewFromFloat(b)
  293. // 默认1
  294. cf := decimal.NewFromFloat(1)
  295. // 总增速
  296. val := bf.Add(cf)
  297. // 计算
  298. result, _ = val.Mul(af).Round(4).Float64()
  299. } else {
  300. result = 0
  301. }
  302. return
  303. }
  304. // GetChartPredictEdbInfoDataListByRuleHc 根据环差值规则获取预测数据
  305. // 2.4 环差:在未来某一个时间段内,给定一个固定的环比增加值a,用上一期值X加上环比增加值a,得到预测值Y=X+a
  306. // 例: 最近1期值为100,给定环比增加值a=10,则未来3期预测值为: 100+10=110,110+10=120,120+10=130
  307. func GetChartPredictEdbInfoDataListByRuleHc(edbInfoId int, hcValue float64, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  308. allDataList := make([]*EdbInfoSearchData, 0)
  309. allDataList = append(allDataList, realPredictEdbInfoData...)
  310. allDataList = append(allDataList, predictEdbInfoData...)
  311. newPredictEdbInfoData = predictEdbInfoData
  312. index := len(allDataList)
  313. //获取后面的预测数据
  314. for k, currentDate := range dayList {
  315. tmpK := index + k - 1 //上1期的值
  316. // 环差别值计算
  317. val := PredictHczDiv(allDataList[tmpK].Value, hcValue)
  318. currentDateStr := currentDate.Format(utils.FormatDate)
  319. tmpData := &EdbInfoSearchData{
  320. EdbDataId: edbInfoId + 10000000000 + index + k,
  321. DataTime: currentDateStr,
  322. Value: val,
  323. }
  324. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  325. allDataList = append(allDataList, tmpData)
  326. existMap[currentDateStr] = val
  327. // 最大最小值
  328. if val < minValue {
  329. minValue = val
  330. }
  331. if val > maxValue {
  332. maxValue = val
  333. }
  334. }
  335. return
  336. }
  337. // PredictHczDiv 环差值计算
  338. // @params a float64 上一期值
  339. // @params b float64 固定的环比增加值
  340. func PredictHczDiv(a, b float64) (result float64) {
  341. if b != 0 {
  342. // 上一期值
  343. af := decimal.NewFromFloat(a)
  344. // 固定的环比增加值
  345. bf := decimal.NewFromFloat(b)
  346. // 计算
  347. result, _ = af.Add(bf).Round(4).Float64()
  348. } else {
  349. result = 0
  350. }
  351. return
  352. }
  353. // GetChartPredictEdbInfoDataListByRuleNMoveMeanValue 根据N期移动均值规则获取预测数据
  354. // 2.5 N期移动均值:在未来某一个时间段内,下一期值等于过去N期值得平均值。
  355. // 例:最近3期值(N=3),为95,98,105则未来第1期值为 1/3*(95+98+105)=99.33, 未来第2期值为 1/3*(98+105+99.33)=100.78依次类推。
  356. func GetChartPredictEdbInfoDataListByRuleNMoveMeanValue(edbInfoId int, nValue int, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  357. allDataList := make([]*EdbInfoSearchData, 0)
  358. allDataList = append(allDataList, realPredictEdbInfoData...)
  359. allDataList = append(allDataList, predictEdbInfoData...)
  360. newPredictEdbInfoData = predictEdbInfoData
  361. lenAllData := len(allDataList)
  362. if lenAllData < nValue || lenAllData <= 0 {
  363. return
  364. }
  365. if nValue <= 0 {
  366. return
  367. }
  368. // 分母
  369. decimalN := decimal.NewFromInt(int64(nValue))
  370. //获取后面的预测数据
  371. for k, currentDate := range dayList {
  372. tmpIndex := lenAllData + k - 1 //上1期的值
  373. // 数据集合中的最后一个数据
  374. tmpDecimalVal := decimal.NewFromFloat(allDataList[tmpIndex].Value)
  375. for tmpK := 2; tmpK <= nValue; tmpK++ {
  376. tmpIndex2 := tmpIndex - tmpK //上N期的值
  377. tmpDecimalVal2 := decimal.NewFromFloat(allDataList[tmpIndex2].Value)
  378. tmpDecimalVal = tmpDecimalVal.Add(tmpDecimalVal2)
  379. }
  380. // N期移动均值计算
  381. val, _ := tmpDecimalVal.Div(decimalN).Round(4).Float64()
  382. currentDateStr := currentDate.Format(utils.FormatDate)
  383. tmpData := &EdbInfoSearchData{
  384. EdbDataId: edbInfoId + 10000000000 + lenAllData + k,
  385. DataTime: currentDateStr,
  386. Value: val,
  387. }
  388. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  389. allDataList = append(allDataList, tmpData)
  390. existMap[currentDateStr] = val
  391. // 最大最小值
  392. if val < minValue {
  393. minValue = val
  394. }
  395. if val > maxValue {
  396. maxValue = val
  397. }
  398. }
  399. return
  400. }
  401. // GetChartPredictEdbInfoDataListByRuleNLinearRegression 根据N期移动均值规则获取预测数据
  402. // 2.6N期段线性外推值:给出过去N期值所确定的线性回归方程(Y=aX+b)在未来一段时间内的推算值。回归方程虽然比较复杂,但各种编程语言应该都有现成的模块或函数,应该无需自己编写。
  403. // 例1:过去5期值(N=5)分别为:3,5,7,9,11(每两期值之间的时间间隔相等)。那么按照线性回归方程推算,未来三期的预测值是:13,15,17。
  404. //
  405. // 例2:过去6期值(N=6)分别为:3,3,5,7,9,11(每两期值之间的时间间隔相等)。那么按照线性回归方程推算,未来三期的预测值是:12.33,14.05,15.76。例1和例2的区别在于,多加了一期数据,导致回归方程发生改变,从而预测值不同。
  406. func GetChartPredictEdbInfoDataListByRuleNLinearRegression(edbInfoId int, nValue int, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
  407. //var errMsg string
  408. //defer func() {
  409. // if errMsg != `` {
  410. // go alarm_msg.SendAlarmMsg("更新上海的token失败;ERR:"+err.Error(), 3)
  411. // }
  412. //}()
  413. allDataList := make([]*EdbInfoSearchData, 0)
  414. allDataList = append(allDataList, realPredictEdbInfoData...)
  415. allDataList = append(allDataList, predictEdbInfoData...)
  416. newPredictEdbInfoData = predictEdbInfoData
  417. lenAllData := len(allDataList)
  418. if lenAllData < nValue || lenAllData <= 0 {
  419. return
  420. }
  421. if nValue <= 1 {
  422. return
  423. }
  424. //获取后面的预测数据
  425. // 获取线性方程公式的a、b的值
  426. coordinateData := make([]utils.Coordinate, 0)
  427. for tmpK := nValue; tmpK > 0; tmpK-- {
  428. tmpIndex2 := lenAllData - tmpK //上N期的值
  429. tmpCoordinate := utils.Coordinate{
  430. X: float64(nValue - tmpK + 1),
  431. Y: allDataList[tmpIndex2].Value,
  432. }
  433. coordinateData = append(coordinateData, tmpCoordinate)
  434. }
  435. a, b := utils.GetLinearResult(coordinateData)
  436. if math.IsNaN(a) || math.IsNaN(b) {
  437. err = errors.New("线性方程公式生成失败")
  438. return
  439. }
  440. //fmt.Println("a:", a, ";======b:", b)
  441. aDecimal := decimal.NewFromFloat(a)
  442. bDecimal := decimal.NewFromFloat(b)
  443. for k, currentDate := range dayList {
  444. tmpK := nValue + k + 1
  445. xDecimal := decimal.NewFromInt(int64(tmpK))
  446. val, _ := aDecimal.Mul(xDecimal).Add(bDecimal).Round(4).Float64()
  447. currentDateStr := currentDate.Format(utils.FormatDate)
  448. tmpData := &EdbInfoSearchData{
  449. EdbDataId: edbInfoId + 10000000000 + lenAllData + k,
  450. DataTime: currentDateStr,
  451. Value: val,
  452. }
  453. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  454. allDataList = append(allDataList, tmpData)
  455. existMap[currentDateStr] = val
  456. // 最大最小值
  457. if val < minValue {
  458. minValue = val
  459. }
  460. if val > maxValue {
  461. maxValue = val
  462. }
  463. }
  464. return
  465. }
  466. // GetChartPredictEdbInfoDataListByRuleTrendsHC 根据动态环比增加值的计算规则获取预测数据
  467. //
  468. // 研究员有对预测指标进行动态环差计算的需求,即预测指标使用环差规则进行预测时,环比增加值不是固定值,而是由几个预测指标计算得出的动态变化的值;
  469. // 需求说明:
  470. // 1、增加“动态环差”预测规则;
  471. // 2、环比增加值在弹窗设置;
  472. // 3、动态环差预测举例:
  473. // 指标A实际最新数据为2022-10-27(100);
  474. // 预测指标B预测数据为2022-10-28(240)、2022-10-29(300);
  475. // 预测指标C预测数据为2022-10-28(260)、2022-10-29(310);
  476. // 计算公式为B-C;
  477. // 则指标A至2022-10-29的预测值为2022-10-28(100+(240-260)=80)、2022-10-29(80+(300-310)=90);
  478. // 注:动态环比增加值的计算遵从计算指标的计算规则,即用于计算的指标若有部分指标缺少部分日期数据,则这部分日期数据不做计算,为空;若动态环比增加值某一天为空,则往前追溯最近一期有值的环比增加值作为该天的数值参与计算;
  479. func GetChartPredictEdbInfoDataListByRuleTrendsHC(edbInfoId int, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, hcDataMap, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  480. allDataList := make([]*EdbInfoSearchData, 0)
  481. allDataList = append(allDataList, realPredictEdbInfoData...)
  482. allDataList = append(allDataList, predictEdbInfoData...)
  483. newPredictEdbInfoData = predictEdbInfoData
  484. lenAllData := len(allDataList)
  485. if lenAllData <= 0 {
  486. return
  487. }
  488. for k, currentDate := range dayList {
  489. // 最近一条数据
  490. tmpLenAllDataList := len(allDataList)
  491. lastValue := allDataList[tmpLenAllDataList-1].Value
  492. // 动态环差值数据
  493. currentDateStr := currentDate.Format(utils.FormatDate)
  494. hcVal, ok := hcDataMap[currentDateStr]
  495. if !ok {
  496. continue
  497. }
  498. lastValueDecimal := decimal.NewFromFloat(lastValue)
  499. hcValDecimal := decimal.NewFromFloat(hcVal)
  500. val, _ := lastValueDecimal.Add(hcValDecimal).Round(4).Float64()
  501. tmpData := &EdbInfoSearchData{
  502. EdbDataId: edbInfoId + 10000000000 + lenAllData + k,
  503. //EdbInfoId: edbInfoId,
  504. DataTime: currentDateStr,
  505. Value: val,
  506. //DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  507. }
  508. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  509. allDataList = append(allDataList, tmpData)
  510. existMap[currentDateStr] = val
  511. // 最大最小值
  512. if val < minValue {
  513. minValue = val
  514. }
  515. if val > maxValue {
  516. maxValue = val
  517. }
  518. }
  519. return
  520. }
  521. // GetChartPredictEdbInfoDataListByRuleFinalValueHc 根据 给定终值后插值 规则获取预测数据
  522. //
  523. // 项目背景:
  524. // 假设螺纹产量在2023年1月1号的预测值是255万吨,从当下到2023年1月1号,螺纹产量将会线性变化,那么每一期的螺纹产量是多少?
  525. // 算法:从当下(2022/10/28)到2023/1/1号,一共65天,从当前值(305.02)到255,差值-50.02,
  526. // 则每日环差为-50.02/65=-0.7695。因为数据点是周度频率,每周环差为,-0.3849*7=-5.3868。
  527. // 从以上计算过程可看出,“给定终值后差值”的算法,是在“环差”算法的基础上,做的一个改动。即这个”环差值”=【(终值-最新值)/终值与最新值得日期差】*数据频率
  528. // 需求说明:
  529. // 1、增加一个预测规则,名为“给定终值后插值”,给定预测截止日期和预测终值,计算最新数据日期至预测截止日期的时间差T,计算最新数据和预测终值的数据差S,数据频率与指标频度有关,日度=1,周度=7,旬度=10,月度=30,季度=90,年度=365,环差值=S/T*频率,预测数值=前一天数值+环差值;
  530. // 2、最新数据值和日期改动后,需重新计算环差值和预测数值;
  531. func GetChartPredictEdbInfoDataListByRuleFinalValueHc(edbInfoId int, finalValue float64, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  532. allDataList := make([]*EdbInfoSearchData, 0)
  533. allDataList = append(allDataList, realPredictEdbInfoData...)
  534. allDataList = append(allDataList, predictEdbInfoData...)
  535. newPredictEdbInfoData = predictEdbInfoData
  536. index := len(allDataList)
  537. //获取后面的预测日期
  538. lenDay := len(dayList)
  539. if lenDay <= 0 {
  540. return
  541. }
  542. var hcValue float64
  543. lastValueDeciamal := decimal.NewFromFloat(allDataList[index-1].Value) // 实际数据的最后一个值
  544. finalValueDeciamal := decimal.NewFromFloat(finalValue) // 给定的终止数据
  545. dayDecimal := decimal.NewFromInt(int64(lenDay)) // 需要作为分母的期数
  546. hcValue, _ = finalValueDeciamal.Sub(lastValueDeciamal).Div(dayDecimal).Float64() // 计算出来的环差值
  547. //获取后面的预测数据
  548. predictEdbInfoData = make([]*EdbInfoSearchData, 0)
  549. lastK := lenDay - 1 // 最后的日期
  550. for k, currentDate := range dayList {
  551. tmpK := index + k - 1 //上1期的值
  552. var val float64
  553. // 环差别值计算
  554. if k == lastK { //如果是最后一天,那么就用最终值,否则就计算
  555. val = finalValue
  556. } else {
  557. val = PredictHczDiv(allDataList[tmpK].Value, hcValue)
  558. }
  559. currentDateStr := currentDate.Format(utils.FormatDate)
  560. tmpData := &EdbInfoSearchData{
  561. EdbDataId: edbInfoId + 10000000000 + index + k,
  562. //EdbInfoId: edbInfoId,
  563. DataTime: currentDateStr,
  564. Value: val,
  565. //DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  566. }
  567. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  568. allDataList = append(allDataList, tmpData)
  569. existMap[currentDateStr] = val
  570. // 最大最小值
  571. if val < minValue {
  572. minValue = val
  573. }
  574. if val > maxValue {
  575. maxValue = val
  576. }
  577. }
  578. return
  579. }
  580. // SeasonConf 季节性规则的配置
  581. type SeasonConf struct {
  582. Calendar string `description:"公历、农历"`
  583. YearType int `description:"选择方式,1:连续N年;2:指定年份"`
  584. NValue int `description:"连续N年"`
  585. YearList []int `description:"指定年份列表"`
  586. }
  587. // GetChartPredictEdbInfoDataListByRuleSeason 根据 季节性 规则获取预测数据
  588. //
  589. // ETA预测规则:季节性
  590. // 已知选定指标A最近更新日期: 2022-12-6 200
  591. // 设置预测截止日期2023-01-06
  592. // 1、选择过去N年,N=3
  593. // 则过去N年为2021、2020、2019
  594. // 指标A日期 实际值 指标A日期
  595. // 2019/12/5 150 2019/12/6
  596. // 2020/12/5 180 2020/12/6
  597. // 2021/12/5 210 2021/12/6
  598. // 2019/12/31 200 2020/1/1
  599. // 2020/12/31 210 2021/1/1
  600. // 2021/12/31 250 2022/1/1
  601. //
  602. // 计算12.7预测值,求过去N年环差均值=[(100-150)+(160-180)+(250-210)]/3=-10
  603. // 则12.7预测值=12.6值+过去N年环差均值=200-10=190
  604. // 以此类推...
  605. //
  606. // 计算2023.1.2预测值,求过去N年环差均值=[(300-200)+(220-210)+(260-250)]/3=40
  607. // 则2023.1.2预测值=2023.1.1值+过去N年环差均值
  608. func GetChartPredictEdbInfoDataListByRuleSeason(edbInfoId int, yearsList []int, calendar string, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
  609. allDataList := make([]*EdbInfoSearchData, 0)
  610. allDataList = append(allDataList, realPredictEdbInfoData...)
  611. allDataList = append(allDataList, predictEdbInfoData...)
  612. newPredictEdbInfoData = predictEdbInfoData
  613. // 插值法数据处理
  614. handleDataMap := make(map[string]float64)
  615. _, err = HandleDataByLinearRegression(allDataList, handleDataMap)
  616. if err != nil {
  617. return
  618. }
  619. // 获取每个年份的日期数据需要平移的天数
  620. moveDayMap := make(map[int]int, 0) // 每个年份的春节公历
  621. {
  622. if calendar == "公历" {
  623. for _, year := range yearsList {
  624. moveDayMap[year] = 0 //公历就不平移了
  625. }
  626. } else {
  627. currentDay := time.Now()
  628. if currentDay.Month() >= 11 { //如果大于等于11月份,那么用的是下一年的春节
  629. currentDay = currentDay.AddDate(1, 0, 0)
  630. }
  631. currentYear := currentDay.Year()
  632. currentYearCjnl := fmt.Sprintf("%d-01-01", currentYear) //当年的春节农历
  633. currentYearCjgl := solarlunar.LunarToSolar(currentYearCjnl, false) //当年的春节公历
  634. currentYearCjglTime, tmpErr := time.ParseInLocation(utils.FormatDate, currentYearCjgl, time.Local)
  635. if tmpErr != nil {
  636. err = errors.New("当前春节公历日期转换失败:" + tmpErr.Error())
  637. return
  638. }
  639. // 指定的年份
  640. for _, year := range yearsList {
  641. tmpYearCjnl := fmt.Sprintf("%d-01-01", year) //指定年的春节农历
  642. tmpYearCjgl := solarlunar.LunarToSolar(tmpYearCjnl, false) //指定年的春节公历
  643. //moveDayList = append(moveDayList, 0) //公历就不平移了
  644. tmpYearCjglTime, tmpErr := time.ParseInLocation(utils.FormatDate, tmpYearCjgl, time.Local)
  645. if tmpErr != nil {
  646. err = errors.New(fmt.Sprintf("%d公历日期转换失败:%s", year, tmpErr.Error()))
  647. return
  648. }
  649. tmpCurrentYearCjglTime := currentYearCjglTime.AddDate(year-currentYear, 0, 0)
  650. moveDay := utils.GetTimeSubDay(tmpYearCjglTime, tmpCurrentYearCjglTime)
  651. moveDayMap[year] = moveDay //公历平移
  652. }
  653. }
  654. }
  655. index := len(allDataList)
  656. //获取后面的预测日期
  657. //获取后面的预测数据
  658. predictEdbInfoData = make([]*EdbInfoSearchData, 0)
  659. for k, currentDate := range dayList {
  660. // 如果遇到闰二月,如2.29,去掉该天数据
  661. if strings.Contains(currentDate.Format(utils.FormatDate), "02-29") {
  662. continue
  663. }
  664. tmpHistoryVal := decimal.NewFromFloat(0) //往期的差值总和
  665. tmpHistoryValNum := 0 // 往期差值计算的数量
  666. tmpLenAllDataList := len(allDataList)
  667. tmpK := tmpLenAllDataList - 1 //上1期数据的下标
  668. lastDayData := allDataList[tmpK] // 上1期的数据
  669. lastDayStr := lastDayData.DataTime
  670. lastDayVal := lastDayData.Value
  671. lastDay, tmpErr := time.ParseInLocation(utils.FormatDate, lastDayStr, time.Local)
  672. if tmpErr != nil {
  673. err = errors.New("获取上期日期转换失败:" + tmpErr.Error())
  674. }
  675. for _, year := range yearsList {
  676. moveDay := moveDayMap[year] //需要移动的天数
  677. var tmpHistoryCurrentVal, tmpHistoryLastVal float64
  678. var isFindHistoryCurrent, isFindHistoryLast bool //是否找到前几年的数据
  679. //前几年当日的日期
  680. tmpHistoryCurrentDate := currentDate.AddDate(year-currentDate.Year(), 0, -moveDay)
  681. for i := 0; i <= 35; i++ { // 前后35天找数据,找到最近的值,先向后面找,再往前面找
  682. tmpDate := tmpHistoryCurrentDate.AddDate(0, 0, i)
  683. if val, ok := handleDataMap[tmpDate.Format(utils.FormatDate)]; ok {
  684. tmpHistoryCurrentVal = val
  685. isFindHistoryCurrent = true
  686. break
  687. } else {
  688. tmpDate := tmpHistoryCurrentDate.AddDate(0, 0, -i)
  689. if val, ok := handleDataMap[tmpDate.Format(utils.FormatDate)]; ok {
  690. tmpHistoryCurrentVal = val
  691. isFindHistoryCurrent = true
  692. break
  693. }
  694. }
  695. }
  696. //前几年上一期的日期
  697. tmpHistoryLastDate := lastDay.AddDate(year-lastDay.Year(), 0, -moveDay)
  698. for i := 0; i <= 35; i++ { // 前后35天找数据,找到最近的值,先向后面找,再往前面找
  699. tmpDate := tmpHistoryLastDate.AddDate(0, 0, i)
  700. if val, ok := handleDataMap[tmpDate.Format(utils.FormatDate)]; ok {
  701. tmpHistoryLastVal = val
  702. isFindHistoryLast = true
  703. break
  704. } else {
  705. tmpDate := tmpHistoryLastDate.AddDate(0, 0, -i)
  706. if val, ok := handleDataMap[tmpDate.Format(utils.FormatDate)]; ok {
  707. tmpHistoryLastVal = val
  708. isFindHistoryLast = true
  709. break
  710. }
  711. }
  712. }
  713. // 如果两个日期对应的数据都找到了,那么计算两期的差值
  714. if isFindHistoryCurrent && isFindHistoryLast {
  715. af := decimal.NewFromFloat(tmpHistoryCurrentVal)
  716. bf := decimal.NewFromFloat(tmpHistoryLastVal)
  717. tmpHistoryVal = tmpHistoryVal.Add(af.Sub(bf))
  718. tmpHistoryValNum++
  719. }
  720. }
  721. //计算的差值与选择的年份数量不一致,那么当前日期不计算
  722. if tmpHistoryValNum != len(yearsList) {
  723. continue
  724. }
  725. lastDayValDec := decimal.NewFromFloat(lastDayVal)
  726. val, _ := tmpHistoryVal.Div(decimal.NewFromInt(int64(tmpHistoryValNum))).Add(lastDayValDec).Round(4).Float64()
  727. currentDateStr := currentDate.Format(utils.FormatDate)
  728. tmpData := &EdbInfoSearchData{
  729. EdbDataId: edbInfoId + 10000000000 + index + k,
  730. //EdbInfoId: edbInfoId,
  731. DataTime: currentDateStr,
  732. Value: val,
  733. //DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  734. }
  735. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  736. allDataList = append(allDataList, tmpData)
  737. existMap[currentDateStr] = val
  738. // 继续使用插值法补充新预测日期的数据之间的值
  739. _, err = HandleDataByLinearRegression([]*EdbInfoSearchData{
  740. lastDayData, tmpData,
  741. }, handleDataMap)
  742. if err != nil {
  743. return
  744. }
  745. // 最大最小值
  746. if val < minValue {
  747. minValue = val
  748. }
  749. if val > maxValue {
  750. maxValue = val
  751. }
  752. }
  753. return
  754. }
  755. // MoveAverageConf 移动平均同比规则的配置
  756. type MoveAverageConf struct {
  757. Year int `description:"指定年份"`
  758. NValue int `description:"N期的数据"`
  759. }
  760. // GetChartPredictEdbInfoDataListByRuleMoveAverageTb 根据 移动平均同比 规则获取预测数据
  761. //
  762. // ETA预测规则:季节性
  763. // 2、选择指定N年,N=3
  764. // 指定N年为2012、2015、2018
  765. // 指标A日期 实际值 指标A日期 实际值
  766. // 2012/12/5 150 2012/12/6 130
  767. // 2015/12/5 180 2015/12/6 150
  768. // 2018/12/5 210 2018/12/6 260
  769. // 2012/12/31 200 2013/1/1 200
  770. // 2015/12/31 210 2016/1/1 250
  771. // 2018/12/31 250 2019/1/1 270
  772. // 计算12.7预测值,求过去N年环差均值=[(130-150)+(150-180)+(290-210)]/3=10
  773. // 则12.7预测值=12.6值+过去N年环差均值=200+10=210
  774. // 以此类推...
  775. // 计算2023.1.2预测值,求过去N年环差均值=[(200-200)+(250-210)+(270-250)]/3=16.67
  776. // 则2023.1.2预测值=2023.1.1值+过去N年环差均值
  777. func GetChartPredictEdbInfoDataListByRuleMoveAverageTb(edbInfoId int, nValue, year int, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
  778. allDataList := make([]*EdbInfoSearchData, 0)
  779. allDataList = append(allDataList, realPredictEdbInfoData...)
  780. allDataList = append(allDataList, predictEdbInfoData...)
  781. newPredictEdbInfoData = predictEdbInfoData
  782. lenAllData := len(allDataList)
  783. if lenAllData < nValue || lenAllData <= 0 {
  784. return
  785. }
  786. if nValue <= 0 {
  787. return
  788. }
  789. // 分母
  790. decimalN := decimal.NewFromInt(int64(nValue))
  791. // 需要减去的年份
  792. subYear := year - dayList[0].Year()
  793. //获取后面的预测数据
  794. for k, currentDate := range dayList {
  795. tmpLenAllDataList := len(allDataList)
  796. tmpIndex := tmpLenAllDataList - 1 //上1期数据的下标
  797. averageDateList := make([]string, 0) //计算平均数的日期
  798. // 数据集合中的最后一个数据
  799. tmpDecimalVal := decimal.NewFromFloat(allDataList[tmpIndex].Value)
  800. averageDateList = append(averageDateList, allDataList[tmpIndex].DataTime)
  801. for tmpK := 1; tmpK < nValue; tmpK++ {
  802. tmpIndex2 := tmpIndex - tmpK //上N期的值
  803. tmpDecimalVal2 := decimal.NewFromFloat(allDataList[tmpIndex2].Value)
  804. tmpDecimalVal = tmpDecimalVal.Add(tmpDecimalVal2)
  805. averageDateList = append(averageDateList, allDataList[tmpIndex2].DataTime)
  806. }
  807. // 最近的N期平均值
  808. tmpAverageVal := tmpDecimalVal.Div(decimalN)
  809. var tmpHistoryCurrentVal float64 // 前几年当日的数据值
  810. var isFindHistoryCurrent, isFindHistoryLast bool //是否找到前几年的数据
  811. tmpHistoryDecimalVal := decimal.NewFromFloat(0) //前几年N期数据总值
  812. {
  813. // 前几年N期汇总期数
  814. tmpHistoryValNum := 0
  815. {
  816. //前几年当日的日期
  817. tmpHistoryCurrentDate := currentDate.AddDate(subYear, 0, 0)
  818. for i := 0; i <= 35; i++ { // 前后35天找数据,找到最近的值,先向后面找,再往前面找
  819. tmpDate := tmpHistoryCurrentDate.AddDate(0, 0, i)
  820. if val, ok := existMap[tmpDate.Format(utils.FormatDate)]; ok {
  821. tmpHistoryCurrentVal = val
  822. isFindHistoryCurrent = true
  823. break
  824. } else {
  825. tmpDate := tmpHistoryCurrentDate.AddDate(0, 0, -i)
  826. if val, ok := existMap[tmpDate.Format(utils.FormatDate)]; ok {
  827. tmpHistoryCurrentVal = val
  828. isFindHistoryCurrent = true
  829. break
  830. }
  831. }
  832. }
  833. }
  834. for _, averageDate := range averageDateList {
  835. lastDay, tmpErr := time.ParseInLocation(utils.FormatDate, averageDate, time.Local)
  836. if tmpErr != nil {
  837. err = tmpErr
  838. return
  839. }
  840. //前几年上一期的日期
  841. tmpHistoryLastDate := lastDay.AddDate(subYear, 0, 0)
  842. for i := 0; i <= 35; i++ { // 前后35天找数据,找到最近的值,先向后面找,再往前面找
  843. tmpDate := tmpHistoryLastDate.AddDate(0, 0, i)
  844. if val, ok := existMap[tmpDate.Format(utils.FormatDate)]; ok {
  845. tmpDecimalVal2 := decimal.NewFromFloat(val)
  846. tmpHistoryDecimalVal = tmpHistoryDecimalVal.Add(tmpDecimalVal2)
  847. tmpHistoryValNum++
  848. break
  849. } else {
  850. tmpDate := tmpHistoryLastDate.AddDate(0, 0, -i)
  851. if val, ok := existMap[tmpDate.Format(utils.FormatDate)]; ok {
  852. tmpDecimalVal2 := decimal.NewFromFloat(val)
  853. tmpHistoryDecimalVal = tmpHistoryDecimalVal.Add(tmpDecimalVal2)
  854. tmpHistoryValNum++
  855. break
  856. }
  857. }
  858. }
  859. }
  860. // 汇总期数与配置的N期数量一致
  861. if tmpHistoryValNum == nValue {
  862. isFindHistoryLast = true
  863. }
  864. }
  865. // 如果没有找到前几年的汇总数据,或者没有找到前几年当日的数据,那么退出当前循环,进入下一循环
  866. if !isFindHistoryLast || !isFindHistoryCurrent {
  867. continue
  868. }
  869. // 计算最近N期平均值
  870. tmpHistoryAverageVal := tmpHistoryDecimalVal.Div(decimalN)
  871. // 计算最近N期同比值
  872. tbVal := tmpAverageVal.Div(tmpHistoryAverageVal)
  873. // 预测值结果 = 同比年份同期值(tmpHistoryCurrentVal的值)* 同比值(tbVal的值)
  874. val, _ := decimal.NewFromFloat(tmpHistoryCurrentVal).Mul(tbVal).Round(4).Float64()
  875. currentDateStr := currentDate.Format(utils.FormatDate)
  876. tmpData := &EdbInfoSearchData{
  877. EdbDataId: edbInfoId + 10000000000 + lenAllData + k,
  878. //EdbInfoId: edbInfoId,
  879. DataTime: currentDateStr,
  880. Value: val,
  881. //DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  882. }
  883. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  884. allDataList = append(allDataList, tmpData)
  885. existMap[currentDateStr] = val
  886. // 最大最小值
  887. if val < minValue {
  888. minValue = val
  889. }
  890. if val > maxValue {
  891. maxValue = val
  892. }
  893. }
  894. return
  895. }
  896. // GetChartPredictEdbInfoDataListByRuleTbzscz 根据 同比增速差值 规则获取预测数据
  897. // 同比增速差值计算方式:
  898. // 1、首先计算出所选指标实际最新日期值的同比增速:(本期数值-同期数值)÷同期数值*100%
  899. // 2、根据预测截止日期的同比增速终值、最新日期值的同比增速、与最新日期距离截止日期的期数,计算出到截止日期为止的每一期的同比增速。(等差规则计算每一期的同比增速,结合去年同期值,计算出每一期的同比预测值)。公差=(末项-首项)÷(n-1),an=a1+(n-1)d,(n为正整数,n大于等于2)
  900. // 3、根据去年同期值和未来每一期的同比增速值,求出同比预测值,同比预测值=同期值*(1+同比增速)
  901. // 同比增速差值:计算最新数据的同比增速((本期数值-同期数值)÷同期数值*100%),结合同比增速终值与期数,计算每一期同比增速,进而求出同比预测值。
  902. //
  903. // 例:如上图所示指标,(1)最新日期值2022-12-31 141175 ,结合同期值,计算同比增速;
  904. // (2)同比增速终值,若为50%, 预测日期为2023-03-31,则根据(1)中的同比增速值与同比增速终值,计算出中间两期的同比增速;
  905. // (3)求出每一期的预测同比值,预测同比值=同期值*(1+同比增速)
  906. func GetChartPredictEdbInfoDataListByRuleTbzscz(edbInfoId int, tbEndValue float64, dayList []time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  907. allDataList := make([]*EdbInfoSearchData, 0)
  908. allDataList = append(allDataList, realPredictEdbInfoData...)
  909. allDataList = append(allDataList, predictEdbInfoData...)
  910. newPredictEdbInfoData = predictEdbInfoData
  911. index := len(allDataList)
  912. // 获取近期数据的同比值
  913. if index <= 0 {
  914. return
  915. }
  916. lastData := allDataList[index-1]
  917. lastDayTime, _ := time.ParseInLocation(utils.FormatDate, lastData.DataTime, time.Local)
  918. var lastTb decimal.Decimal // 计算最新数据与上一期的数据同比值
  919. {
  920. //上一年的日期
  921. preDate := lastDayTime.AddDate(-1, 0, 0)
  922. preDateStr := preDate.Format(utils.FormatDate)
  923. if preValue, ok := existMap[preDateStr]; ok { //上一年同期找到
  924. lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
  925. } else {
  926. switch frequency {
  927. case "月度":
  928. //向上和向下,各找一个月
  929. nextDateDay := preDate
  930. preDateDay := preDate
  931. for i := 0; i <= 35; i++ {
  932. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  933. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  934. lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
  935. break
  936. } else {
  937. preDateDayStr := preDateDay.Format(utils.FormatDate)
  938. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  939. lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
  940. break
  941. }
  942. }
  943. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  944. preDateDay = preDateDay.AddDate(0, 0, -1)
  945. }
  946. case "季度", "年度":
  947. if preValue, ok := existMap[preDateStr]; ok { //上一年同期->下一个月找到
  948. lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
  949. break
  950. }
  951. default:
  952. nextDateDay := preDate
  953. preDateDay := preDate
  954. for i := 0; i < 35; i++ {
  955. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  956. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  957. lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
  958. break
  959. } else {
  960. preDateDayStr := preDateDay.Format(utils.FormatDate)
  961. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  962. lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
  963. break
  964. } else {
  965. //fmt.Println("pre not find:", preDateStr, "i:", i)
  966. }
  967. }
  968. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  969. preDateDay = preDateDay.AddDate(0, 0, -1)
  970. }
  971. }
  972. }
  973. }
  974. //获取后面的预测数据
  975. lenDay := len(dayList)
  976. tbEndValueDecimal := decimal.NewFromFloat(tbEndValue)
  977. avgTbVal := tbEndValueDecimal.Sub(lastTb).Div(decimal.NewFromInt(int64(lenDay)))
  978. predictEdbInfoData = make([]*EdbInfoSearchData, 0)
  979. for k, currentDate := range dayList {
  980. var tbValue decimal.Decimal
  981. if k == lenDay-1 { // 如果是最后的日期了,那么就用终值去计算
  982. tbValue = tbEndValueDecimal.Add(decimal.NewFromInt(1))
  983. } else { // 最近数据的同比值 + (平均增值乘以当前期数)
  984. tbValue = lastTb.Add(avgTbVal.Mul(decimal.NewFromInt(int64(k + 1)))).Add(decimal.NewFromInt(1))
  985. }
  986. tmpData := &EdbInfoSearchData{
  987. EdbDataId: edbInfoId + 100000 + index + k,
  988. //EdbInfoId: edbInfoId,
  989. DataTime: currentDate.Format(utils.FormatDate),
  990. //Value: dataValue,
  991. //DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  992. }
  993. var val float64
  994. var calculateStatus bool //计算结果
  995. //currentItem := existMap[av]
  996. //上一年的日期
  997. preDate := currentDate.AddDate(-1, 0, 0)
  998. preDateStr := preDate.Format(utils.FormatDate)
  999. if preValue, ok := existMap[preDateStr]; ok { //上一年同期找到
  1000. val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).Round(4).Float64()
  1001. calculateStatus = true
  1002. } else {
  1003. switch frequency {
  1004. case "月度":
  1005. //向上和向下,各找一个月
  1006. nextDateDay := preDate
  1007. preDateDay := preDate
  1008. for i := 0; i <= 35; i++ {
  1009. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  1010. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  1011. val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).Round(4).Float64()
  1012. calculateStatus = true
  1013. break
  1014. } else {
  1015. preDateDayStr := preDateDay.Format(utils.FormatDate)
  1016. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  1017. val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).Round(4).Float64()
  1018. calculateStatus = true
  1019. break
  1020. }
  1021. }
  1022. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  1023. preDateDay = preDateDay.AddDate(0, 0, -1)
  1024. }
  1025. case "季度", "年度":
  1026. if preValue, ok := existMap[preDateStr]; ok { //上一年同期->下一个月找到
  1027. val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).Round(4).Float64()
  1028. calculateStatus = true
  1029. break
  1030. }
  1031. default:
  1032. nextDateDay := preDate
  1033. preDateDay := preDate
  1034. for i := 0; i < 35; i++ {
  1035. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  1036. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  1037. val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).Round(4).Float64()
  1038. calculateStatus = true
  1039. break
  1040. } else {
  1041. preDateDayStr := preDateDay.Format(utils.FormatDate)
  1042. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  1043. val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).Round(4).Float64()
  1044. calculateStatus = true
  1045. break
  1046. } else {
  1047. //fmt.Println("pre not find:", preDateStr, "i:", i)
  1048. }
  1049. }
  1050. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  1051. preDateDay = preDateDay.AddDate(0, 0, -1)
  1052. }
  1053. }
  1054. }
  1055. if calculateStatus {
  1056. tmpData.Value = val
  1057. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  1058. allDataList = append(allDataList, tmpData)
  1059. existMap[tmpData.DataTime] = val
  1060. // 最大最小值
  1061. if val < minValue {
  1062. minValue = val
  1063. }
  1064. if val > maxValue {
  1065. maxValue = val
  1066. }
  1067. }
  1068. }
  1069. return
  1070. }
  1071. // RuleLineNhConf 一元线性拟合规则的配置
  1072. type RuleLineNhConf struct {
  1073. StartDate string `description:"开始日期"`
  1074. EndDate string `description:"结束日期"`
  1075. MoveDay int `description:"移动天数"`
  1076. EdbInfoId int `description:"指标id"`
  1077. DateType int `description:"时间类型:0:开始日期至截止日期,1开始日期-至今"`
  1078. }
  1079. // GetChartPredictEdbInfoDataListByRuleLineNh 根据 一元线性拟合 的计算规则获取预测数据
  1080. //
  1081. // 选择被预测的指标B(作为自变量,非预测指标),选择指标A(作为因变量,可以是基础指标和预测指标)
  1082. // 2、选择拟合时间段,起始日期至今或指定时间段,选择至今,在计算时截止到指标B的最新日期
  1083. // 3、设定A领先B时间(天),正整数、负整数、0
  1084. // 4、调用拟合残差的数据预处理和算法,给出拟合方程Y=aX+b的系数a,b
  1085. // 5、指标A代入拟合方程得到拟合预测指标B',拟合预测指标使用指标B的频度,在指标B的实际值后面连接拟合预测指标B'对应日期的预测值
  1086. //
  1087. // 注:选择预测截止日期,若所选日期 ≤ 指标A设置领先后的日期序列,则预测指标日期最新日期有值(在指标B'的有值范围内);若所选日期 > 指标A设置领先后的日期序列,则预测指标只到指标A领先后的日期序列(超出指标B'的有值范围,最多到指标B'的最新值);指标A、B更新后,更新预测指标
  1088. func GetChartPredictEdbInfoDataListByRuleLineNh(edbInfoId int, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, newNhccDataMap, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
  1089. allDataList := make([]*EdbInfoSearchData, 0)
  1090. allDataList = append(allDataList, realPredictEdbInfoData...)
  1091. allDataList = append(allDataList, predictEdbInfoData...)
  1092. newPredictEdbInfoData = predictEdbInfoData
  1093. lenAllData := len(allDataList)
  1094. if lenAllData <= 0 {
  1095. return
  1096. }
  1097. for k, currentDate := range dayList {
  1098. // 动态拟合残差值数据
  1099. currentDateStr := currentDate.Format(utils.FormatDate)
  1100. val, ok := newNhccDataMap[currentDateStr]
  1101. if !ok {
  1102. continue
  1103. }
  1104. tmpData := &EdbInfoSearchData{
  1105. EdbDataId: edbInfoId + 100000 + lenAllData + k,
  1106. //EdbInfoId: edbInfoId,
  1107. DataTime: currentDateStr,
  1108. Value: val,
  1109. //DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  1110. }
  1111. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  1112. allDataList = append(allDataList, tmpData)
  1113. existMap[currentDateStr] = val
  1114. // 最大最小值
  1115. if val < minValue {
  1116. minValue = val
  1117. }
  1118. if val > maxValue {
  1119. maxValue = val
  1120. }
  1121. }
  1122. return
  1123. }
  1124. // getCalculateNhccData 获取计算出来的 拟合残差 数据
  1125. func getCalculateNhccData(secondDataList []*EdbInfoSearchData, ruleConf RuleLineNhConf) (newBDataMap map[string]float64, err error, errMsg string) {
  1126. firstEdbInfoId := ruleConf.EdbInfoId
  1127. moveDay := ruleConf.MoveDay
  1128. startDate, _ := time.ParseInLocation(utils.FormatDate, ruleConf.StartDate, time.Local)
  1129. var endDate time.Time
  1130. if ruleConf.DateType == 0 {
  1131. endDate, _ = time.ParseInLocation(utils.FormatDate, ruleConf.EndDate, time.Local)
  1132. } else {
  1133. endDate, _ = time.ParseInLocation(utils.FormatDate, time.Now().Format(utils.FormatDate), time.Local)
  1134. }
  1135. //查询当前指标现有的数据
  1136. edbInfo, err := GetEdbInfoById(firstEdbInfoId)
  1137. if err != nil {
  1138. return
  1139. }
  1140. //第一个指标
  1141. aDataList := make([]EdbInfoSearchData, 0)
  1142. aDataMap := make(map[string]float64)
  1143. {
  1144. //第一个指标的数据列表
  1145. var firstDataList []*EdbInfoSearchData
  1146. switch edbInfo.EdbInfoType {
  1147. case 0:
  1148. //获取来源指标的数据
  1149. firstDataList, err = GetEdbDataListAll(edbInfo.Source, edbInfo.SubSource, FindEdbDataListAllCond{
  1150. EdbInfoId: edbInfo.EdbInfoId,
  1151. }, 1)
  1152. case 1:
  1153. firstDataList, err = GetPredictEdbDataListAllByStartDate(edbInfo, 1, "")
  1154. default:
  1155. err = errors.New(fmt.Sprint("获取失败,指标类型异常", edbInfo.EdbInfoType))
  1156. }
  1157. if err != nil {
  1158. return
  1159. }
  1160. aDataList, aDataMap = handleNhccData(firstDataList, moveDay)
  1161. }
  1162. //第二个指标
  1163. bDataList := make([]EdbInfoSearchData, 0)
  1164. bDataMap := make(map[string]float64)
  1165. {
  1166. bDataList, bDataMap = handleNhccData(secondDataList, 0)
  1167. }
  1168. if len(aDataList) <= 0 {
  1169. errMsg = `自变量没有数据`
  1170. err = errors.New(errMsg)
  1171. return
  1172. }
  1173. if len(bDataList) <= 0 {
  1174. errMsg = `因变量没有数据`
  1175. err = errors.New(errMsg)
  1176. return
  1177. }
  1178. // 拟合残差计算的结束日期判断
  1179. {
  1180. endAData := aDataList[len(aDataList)-1]
  1181. tmpEndDate, tmpErr := time.ParseInLocation(utils.FormatDate, endAData.DataTime, time.Local)
  1182. if tmpErr != nil {
  1183. err = tmpErr
  1184. return
  1185. }
  1186. // 如果A指标的最新数据日期早于拟合残差的结束日期,那么就用A指标的最新数据日期
  1187. if tmpEndDate.Before(endDate) {
  1188. endDate = tmpEndDate
  1189. }
  1190. endBData := bDataList[len(bDataList)-1]
  1191. tmpEndDate, tmpErr = time.ParseInLocation(utils.FormatDate, endBData.DataTime, time.Local)
  1192. if tmpErr != nil {
  1193. err = tmpErr
  1194. return
  1195. }
  1196. // 如果B指标的最新数据日期早于拟合残差的结束日期,那么就用A指标的最新数据日期
  1197. if tmpEndDate.Before(endDate) {
  1198. endDate = tmpEndDate
  1199. }
  1200. }
  1201. // 计算线性方程公式
  1202. var a, b float64
  1203. {
  1204. coordinateData := make([]utils.Coordinate, 0)
  1205. for i := startDate; i.Before(endDate) || i.Equal(endDate); i = i.AddDate(0, 0, 1) {
  1206. dateStr := i.Format(utils.FormatDate)
  1207. xValue, ok := aDataMap[dateStr]
  1208. if !ok {
  1209. errMsg = "自变量日期:" + dateStr + "数据异常,导致计算线性方程公式失败"
  1210. err = errors.New(errMsg)
  1211. return
  1212. }
  1213. yValue, ok := bDataMap[dateStr]
  1214. if !ok {
  1215. errMsg = "因变量日期:" + dateStr + "数据异常,导致计算线性方程公式失败"
  1216. err = errors.New(errMsg)
  1217. return
  1218. }
  1219. tmpCoordinate := utils.Coordinate{
  1220. X: xValue,
  1221. Y: yValue,
  1222. }
  1223. coordinateData = append(coordinateData, tmpCoordinate)
  1224. }
  1225. a, b = utils.GetLinearResult(coordinateData)
  1226. }
  1227. if math.IsNaN(a) || math.IsNaN(b) {
  1228. errMsg = "线性方程公式生成失败"
  1229. err = errors.New(errMsg)
  1230. return
  1231. }
  1232. //fmt.Println("a:", a, ";======b:", b)
  1233. //计算B’
  1234. newBDataMap = make(map[string]float64)
  1235. {
  1236. //B’=aA+b
  1237. aDecimal := decimal.NewFromFloat(a)
  1238. bDecimal := decimal.NewFromFloat(b)
  1239. for _, aData := range aDataList {
  1240. xDecimal := decimal.NewFromFloat(aData.Value)
  1241. val, _ := aDecimal.Mul(xDecimal).Add(bDecimal).Round(4).Float64()
  1242. newBDataMap[aData.DataTime] = val
  1243. }
  1244. }
  1245. return
  1246. }
  1247. // GetChartPredictEdbInfoDataListByRuleNAnnualAverage 根据 N年均值 规则获取预测数据
  1248. // ETA预测规则:N年均值:过去N年同期均值。过去N年可以连续或者不连续,指标数据均用线性插值补全为日度数据后计算;
  1249. func GetChartPredictEdbInfoDataListByRuleNAnnualAverage(edbInfoId int, configValue string, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
  1250. // 获取配置的年份列表
  1251. yearList, _, err := getYearListBySeasonConf(configValue)
  1252. if err != nil {
  1253. return
  1254. }
  1255. allDataList := make([]*EdbInfoSearchData, 0)
  1256. allDataList = append(allDataList, realPredictEdbInfoData...)
  1257. allDataList = append(allDataList, predictEdbInfoData...)
  1258. newPredictEdbInfoData = predictEdbInfoData
  1259. // 插值法数据处理
  1260. handleDataMap := make(map[string]float64)
  1261. _, err = HandleDataByLinearRegression(allDataList, handleDataMap)
  1262. if err != nil {
  1263. return
  1264. }
  1265. index := len(allDataList)
  1266. //获取后面的预测数据
  1267. predictEdbInfoData = make([]*EdbInfoSearchData, 0)
  1268. for k, currentDate := range dayList {
  1269. // 如果遇到闰二月,如2.29,去掉该天数据
  1270. if strings.Contains(currentDate.Format(utils.FormatDate), "02-29") {
  1271. continue
  1272. }
  1273. tmpK := len(allDataList) - 1 //上1期数据的下标
  1274. lastDayData := allDataList[tmpK] // 上1期的数据
  1275. tmpHistoryVal := decimal.NewFromFloat(0) //往期的差值总和
  1276. tmpHistoryValNum := 0 // 往期差值计算的数量
  1277. for _, year := range yearList {
  1278. //前几年当日的日期
  1279. tmpHistoryCurrentDate := currentDate.AddDate(year-currentDate.Year(), 0, 0)
  1280. if val, ok := handleDataMap[tmpHistoryCurrentDate.Format(utils.FormatDate)]; ok {
  1281. tmpHistoryVal = tmpHistoryVal.Add(decimal.NewFromFloat(val))
  1282. tmpHistoryValNum++
  1283. }
  1284. }
  1285. //计算的差值与选择的年份数量不一致,那么当前日期不计算
  1286. if tmpHistoryValNum != len(yearList) {
  1287. continue
  1288. }
  1289. val, _ := tmpHistoryVal.Div(decimal.NewFromInt(int64(tmpHistoryValNum))).Round(4).Float64()
  1290. currentDateStr := currentDate.Format(utils.FormatDate)
  1291. tmpData := &EdbInfoSearchData{
  1292. EdbDataId: edbInfoId + 100000 + index + k,
  1293. //EdbInfoId: edbInfoId,
  1294. DataTime: currentDateStr,
  1295. Value: val,
  1296. //DataTimestamp: currentDate.UnixNano() / 1e6,
  1297. }
  1298. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  1299. allDataList = append(allDataList, tmpData)
  1300. existMap[currentDateStr] = val
  1301. // 继续使用插值法补充新预测日期的数据之间的值
  1302. _, err = HandleDataByLinearRegression([]*EdbInfoSearchData{
  1303. lastDayData, tmpData,
  1304. }, handleDataMap)
  1305. if err != nil {
  1306. return
  1307. }
  1308. // 最大最小值
  1309. if val < minValue {
  1310. minValue = val
  1311. }
  1312. if val > maxValue {
  1313. maxValue = val
  1314. }
  1315. }
  1316. return
  1317. }
  1318. // AnnualValueInversionConf 年度值倒推规则
  1319. type AnnualValueInversionConf struct {
  1320. Value float64 `description:"年度值"`
  1321. Type int `description:"分配方式,1:均值法;2:同比法"`
  1322. Year int `description:"同比年份"`
  1323. YearList []int `description:"指定年份列表"`
  1324. }
  1325. // GetChartPredictEdbInfoDataListByRuleAnnualValueInversion 根据 年度值倒推 规则获取预测数据
  1326. // 预测指标-年度值倒推
  1327. // 1、年度值倒推,选择同比法,支持选择多个年份(当前只可选择一个年份)。选择多个年份时,计算多个年份的余额平均,和同期平均。
  1328. // 2、年度值倒推,同比法的算法优化:旬度,月度,季度,半年度的算法,同原先算法。
  1329. // 日度、周度值算法更新(假设指标实际值最新日期月2024/3/1):
  1330. // 1、设定年度值
  1331. // 2、计算余额:年度值-年初至今累计值
  1332. // 3、年初至今累计值计算方法:用后置填充变频成连续自然日日度数据。计算1/1至指标最新日期(2024/3/3/1)的累计值。
  1333. // 4、计算同比年份全年累计值,年初至指标最新值同期(2023/3/1)累计值,两者相减得到同比年份同期余额,再取平均值,作为最终的同期余额
  1334. // 5、用今年余额/去年同期余额得到同比增速。
  1335. // 6、每一期预测值,为同比年份的同期值,乘以(1+同比)。去年同期,用变频后的序列对应。
  1336. // 7、如果选择的同比年份是多个。则计算多个年份的平均余额。今年余额/平均余额=同比增速。同比基数为多个年份的同期平均值
  1337. func GetChartPredictEdbInfoDataListByRuleAnnualValueInversion(edbInfoId int, configValue string, dayList []time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
  1338. if frequency == "年度" {
  1339. err = errors.New("当前指标频度是年度,不允许配置年度值倒推")
  1340. return
  1341. }
  1342. // 获取配置
  1343. var annualValueInversionConf AnnualValueInversionConf
  1344. err = json.Unmarshal([]byte(configValue), &annualValueInversionConf)
  1345. if err != nil {
  1346. err = errors.New("年度值倒推配置信息异常:" + err.Error())
  1347. return
  1348. }
  1349. allDataList := make([]*EdbInfoSearchData, 0)
  1350. allDataList = append(allDataList, realPredictEdbInfoData...)
  1351. allDataList = append(allDataList, predictEdbInfoData...)
  1352. newPredictEdbInfoData = predictEdbInfoData
  1353. index := len(allDataList)
  1354. // 没有数据,直接返回
  1355. if index <= 0 {
  1356. return
  1357. }
  1358. // 配置的年度值
  1359. yearValueConfig := annualValueInversionConf.Value
  1360. // 最新数据的日期
  1361. currDayTime, err := time.ParseInLocation(utils.FormatDate, allDataList[index-1].DataTime, time.Local)
  1362. if err != nil {
  1363. return
  1364. }
  1365. // 当前年的日期
  1366. lastDayTime := dayList[len(dayList)-1]
  1367. if currDayTime.Year() != lastDayTime.Year() {
  1368. err = errors.New("年度值倒推不支持跨年预测")
  1369. return
  1370. }
  1371. // 均值法
  1372. if annualValueInversionConf.Type == 1 {
  1373. // 当前年的期数
  1374. currYearN := 0
  1375. // 当前已经消耗的额度
  1376. var currYearVal float64
  1377. // 计算当前年的期数以及已经消耗的额度
  1378. {
  1379. if frequency != "周度" {
  1380. for _, v := range allDataList {
  1381. currTime, tmpErr := time.ParseInLocation(utils.FormatDate, v.DataTime, time.Local)
  1382. if tmpErr != nil {
  1383. err = tmpErr
  1384. return
  1385. }
  1386. // 只是计算今年的
  1387. if currTime.Year() != currDayTime.Year() {
  1388. continue
  1389. }
  1390. currYearN++
  1391. currYearVal = currYearVal + v.Value
  1392. }
  1393. } else {
  1394. tmpDataList := make([]*EdbInfoSearchData, 0)
  1395. // 上一期的数据
  1396. var lastData *EdbInfoSearchData
  1397. // 是否第一条数据
  1398. isFirst := true
  1399. for _, v := range allDataList {
  1400. currTime, tmpErr := time.ParseInLocation(utils.FormatDate, v.DataTime, time.Local)
  1401. if tmpErr != nil {
  1402. err = tmpErr
  1403. return
  1404. }
  1405. // 只是计算今年的
  1406. if currTime.Year() != currDayTime.Year() {
  1407. lastData = v
  1408. continue
  1409. }
  1410. if isFirst {
  1411. tmpDataList = append(tmpDataList, lastData)
  1412. }
  1413. isFirst = false
  1414. tmpDataList = append(tmpDataList, v)
  1415. currYearN++
  1416. }
  1417. // 需要插值法处理
  1418. tmpHandleDataMap := make(map[string]float64)
  1419. _, err = HandleDataByLinearRegression(tmpDataList, tmpHandleDataMap)
  1420. if err != nil {
  1421. return
  1422. }
  1423. for tmpDate, val := range tmpHandleDataMap {
  1424. tmpDateTime, tmpErr := time.ParseInLocation(utils.FormatDate, tmpDate, time.Local)
  1425. if tmpErr != nil {
  1426. err = tmpErr
  1427. return
  1428. }
  1429. if tmpDateTime.Year() != currDayTime.Year() {
  1430. continue
  1431. }
  1432. currYearVal = currYearVal + val
  1433. }
  1434. currYearVal = currYearVal / 7
  1435. }
  1436. }
  1437. var averageVal float64
  1438. switch frequency {
  1439. case "半年度":
  1440. averageVal, _ = (decimal.NewFromFloat(yearValueConfig).Sub(decimal.NewFromFloat(currYearVal))).Div(decimal.NewFromInt(int64(2 - currYearN))).Float64()
  1441. case "季度":
  1442. averageVal, _ = (decimal.NewFromFloat(yearValueConfig).Sub(decimal.NewFromFloat(currYearVal))).Div(decimal.NewFromInt(int64(4 - currYearN))).Float64()
  1443. case "月度":
  1444. averageVal, _ = (decimal.NewFromFloat(yearValueConfig).Sub(decimal.NewFromFloat(currYearVal))).Div(decimal.NewFromInt(int64(12 - currYearN))).Float64()
  1445. case "旬度":
  1446. averageVal, _ = (decimal.NewFromFloat(yearValueConfig).Sub(decimal.NewFromFloat(currYearVal))).Div(decimal.NewFromInt(int64(36 - currYearN))).Float64()
  1447. case "周度", "日度":
  1448. //剩余期数=剩余自然日历天数/今年指标最新日期自然日历天数*今年至今指标数据期数
  1449. // 当前年的第一天
  1450. yearFirstDay := time.Date(currDayTime.Year(), 1, 1, 0, 0, 0, 0, time.Local)
  1451. subDay := utils.GetTimeSubDay(yearFirstDay, currDayTime) + 1
  1452. // 当前年的最后一天
  1453. yearLastDay := time.Date(currDayTime.Year(), 12, 31, 0, 0, 0, 0, time.Local)
  1454. subDay2 := utils.GetTimeSubDay(yearFirstDay, yearLastDay) + 1
  1455. // 剩余期数
  1456. surplusN := decimal.NewFromInt(int64(subDay2 - subDay)).Div(decimal.NewFromInt(int64(subDay))).Mul(decimal.NewFromInt(int64(currYearN)))
  1457. // 剩余余额
  1458. balance := decimal.NewFromFloat(annualValueInversionConf.Value).Sub(decimal.NewFromFloat(currYearVal))
  1459. averageVal, _ = balance.Div(surplusN).Round(4).Float64()
  1460. }
  1461. // 保留四位小数
  1462. averageVal, _ = decimal.NewFromFloat(averageVal).Round(4).Float64()
  1463. for k, currentDate := range dayList {
  1464. currentDateStr := currentDate.Format(utils.FormatDate)
  1465. tmpData := &EdbInfoSearchData{
  1466. EdbDataId: edbInfoId + 100000 + index + k,
  1467. //EdbInfoId: edbInfoId,
  1468. DataTime: currentDateStr,
  1469. Value: averageVal,
  1470. //DataTimestamp: currentDate.UnixNano() / 1e6,
  1471. }
  1472. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  1473. allDataList = append(allDataList, tmpData)
  1474. existMap[currentDateStr] = averageVal
  1475. }
  1476. // 最大最小值
  1477. if averageVal < minValue {
  1478. minValue = averageVal
  1479. }
  1480. if averageVal > maxValue {
  1481. maxValue = averageVal
  1482. }
  1483. return
  1484. }
  1485. // 同比法分配
  1486. // 同比法保证每期同比相等(同比增速=余额/同比年份相应日期的余额,预测值等于同比年份同期值*同比增速);
  1487. // 同比法分配:同比增速=900/同比年份5.19的余额
  1488. yearList := annualValueInversionConf.YearList
  1489. if len(yearList) == 0 {
  1490. //兼容历史数据
  1491. yearList = append(yearList, annualValueInversionConf.Year)
  1492. }
  1493. if len(yearList) == 0 {
  1494. err = errors.New("同比年份不能为空")
  1495. return
  1496. }
  1497. // 每年截止到当前日期的累计值
  1498. dateTotalMap := make(map[time.Time]float64)
  1499. //把每一期的期数和日期绑定
  1500. dateIndexMap := make(map[time.Time]int)
  1501. indexDateMap := make(map[int]time.Time)
  1502. // 每年的累计值(计算使用)
  1503. yearTotalMap := make(map[int]float64)
  1504. //数据按找后值填充的方式处理成连续自然日日度数据
  1505. allDataListMap := make(map[string]float64)
  1506. // todo 如果是日度和周度,用后置填充变频成连续自然日日度数据。计算1/1至指标最新日期(2024/3/3/1)的累计值
  1507. switch frequency {
  1508. case "日度", "周度":
  1509. for _, v := range allDataList {
  1510. allDataListMap[v.DataTime] = v.Value
  1511. }
  1512. //找到最早日期的的年份的1月1日,转成time格式
  1513. earliestYear := allDataList[0].DataTime[:4]
  1514. earliestYearFirstDay, _ := time.ParseInLocation(utils.FormatDate, earliestYear+"-01-01", time.Local)
  1515. days := int(currDayTime.Sub(earliestYearFirstDay).Hours() / float64(24))
  1516. //循环累加日期,直到循环到最新日期
  1517. for i := 0; i <= days; i++ {
  1518. currentDate := earliestYearFirstDay.AddDate(0, 0, i)
  1519. currentDateStr := currentDate.Format(utils.FormatDate)
  1520. val, ok := allDataListMap[currentDateStr]
  1521. if !ok { //如果不存在,则填充后值
  1522. //循环向后查找数据,直到找到
  1523. for j := i + 1; j <= days; j++ {
  1524. //循环往后取值
  1525. currentDateTmp := earliestYearFirstDay.AddDate(0, 0, j)
  1526. currentDateTmpStr := currentDateTmp.Format(utils.FormatDate)
  1527. if tmpVal, ok1 := allDataListMap[currentDateTmpStr]; ok1 {
  1528. allDataListMap[currentDateStr] = tmpVal
  1529. val = tmpVal
  1530. break
  1531. }
  1532. }
  1533. }
  1534. //计算每一天的年初至今累计值
  1535. yearVal := yearTotalMap[currentDate.Year()]
  1536. if frequency == "周度" {
  1537. // 每日累计值需要当前值除7
  1538. yearVal = yearVal + val/7
  1539. } else {
  1540. yearVal = yearVal + val
  1541. }
  1542. yearTotalMap[currentDate.Year()] = yearVal
  1543. dateTotalMap[currentDate] = yearVal
  1544. dateIndexMap[currentDate] = i
  1545. indexDateMap[i] = currentDate
  1546. }
  1547. default:
  1548. for k, v := range allDataList {
  1549. currTime, tmpErr := time.ParseInLocation(utils.FormatDate, v.DataTime, time.Local)
  1550. if tmpErr != nil {
  1551. err = tmpErr
  1552. return
  1553. }
  1554. allDataListMap[v.DataTime] = v.Value
  1555. yearVal := yearTotalMap[currTime.Year()]
  1556. yearVal = yearVal + v.Value
  1557. yearTotalMap[currTime.Year()] = yearVal
  1558. dateTotalMap[currTime] = yearVal
  1559. dateIndexMap[currTime] = k
  1560. indexDateMap[k] = currTime
  1561. }
  1562. }
  1563. // 当年的余额
  1564. currYearBalance := yearValueConfig - yearTotalMap[currDayTime.Year()]
  1565. //fmt.Printf("当年的余额%.4f=给定额度%.4f-当年累计值%.4f\n", currYearBalance, yearValueConfig, yearTotalMap[currDayTime.Year()])
  1566. // 循环统计同比年份同期余额
  1567. var sum, avg float64
  1568. for _, year := range yearList {
  1569. yearTotal := yearTotalMap[year]
  1570. //fmt.Printf("同比年份的累计值%.4f\n", yearTotal)
  1571. tmpDate := time.Date(year, currDayTime.Month(), currDayTime.Day(), 0, 0, 0, 0, currDayTime.Location())
  1572. //fmt.Printf("同比年份的同期%s\n", tmpDate)
  1573. dateTotal, ok := dateTotalMap[tmpDate]
  1574. //fmt.Printf("同比年份的同期累计值%.4f\n", dateTotal)
  1575. if ok {
  1576. sum = sum + (yearTotal - dateTotal)
  1577. } else {
  1578. // 查找下一期的余额
  1579. tmpIndex, ok1 := dateIndexMap[tmpDate]
  1580. if ok1 {
  1581. for tmpDateTime := indexDateMap[tmpIndex+1]; tmpDateTime.Year() == year; tmpDateTime = indexDateMap[tmpIndex+1] {
  1582. dateTotal, ok = dateTotalMap[tmpDateTime]
  1583. if ok {
  1584. //fmt.Printf("同比年份的同期累计值%.4f\n", dateTotal)
  1585. sum = sum + (yearTotal - dateTotal)
  1586. break
  1587. }
  1588. tmpIndex += 1
  1589. }
  1590. }
  1591. }
  1592. }
  1593. if sum == 0 {
  1594. err = errors.New("同比年份的累计值为0")
  1595. return
  1596. }
  1597. //fmt.Printf("同比年份的余额%.4f\n", sum)
  1598. avg = sum / float64(len(yearList))
  1599. //fmt.Printf("同比年份的余额%.4f\n", avg)
  1600. // 同比增速=当年余额/同比年份上一期日期的余额
  1601. tbVal := decimal.NewFromFloat(currYearBalance).Div(decimal.NewFromFloat(avg))
  1602. /*tbVal11, _ := tbVal.Round(4).Float64()
  1603. fmt.Printf("同比增速%.4f\n", tbVal11)*/
  1604. //(同比增速=余额/同比年份相应日期的余额的平均值,预测值等于同比年份同期值*同比增速);
  1605. for k, currentDate := range dayList {
  1606. // 循环遍历多个同比年份
  1607. var valSum float64
  1608. for _, year := range yearList {
  1609. //多个同比年份的同期值的平均值
  1610. tmpCurrentDate := time.Date(year, currentDate.Month(), currentDate.Day(), 0, 0, 0, 0, currentDate.Location())
  1611. if tmpVal, ok := allDataListMap[tmpCurrentDate.Format(utils.FormatDate)]; ok {
  1612. valSum += tmpVal
  1613. } else {
  1614. // 查找下一期的余额
  1615. tmpIndex, ok1 := dateIndexMap[tmpCurrentDate]
  1616. if ok1 {
  1617. for tmpDateTime := indexDateMap[tmpIndex+1]; tmpDateTime.Year() == year; tmpDateTime = indexDateMap[tmpIndex+1] {
  1618. tmpVal, ok = allDataListMap[tmpDateTime.Format(utils.FormatDate)]
  1619. if ok {
  1620. valSum += tmpVal
  1621. break
  1622. }
  1623. tmpIndex += 1
  1624. }
  1625. }
  1626. }
  1627. }
  1628. lastDateVal := valSum / float64(len(yearList))
  1629. //预测值 = 同比年份同期值*同比增速
  1630. tmpVal, _ := decimal.NewFromFloat(lastDateVal).Mul(tbVal).Round(4).Float64()
  1631. currentDateStr := currentDate.Format(utils.FormatDate)
  1632. tmpData := &EdbInfoSearchData{
  1633. EdbDataId: edbInfoId + 100000 + index + k,
  1634. //EdbInfoId: edbInfoId,
  1635. DataTime: currentDateStr,
  1636. Value: tmpVal,
  1637. //DataTimestamp: currentDate.UnixNano() / 1e6,
  1638. }
  1639. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  1640. allDataList = append(allDataList, tmpData)
  1641. existMap[currentDateStr] = tmpVal
  1642. yearVal := yearTotalMap[currentDate.Year()]
  1643. yearVal = yearVal + tmpVal
  1644. yearTotalMap[currentDate.Year()] = yearVal
  1645. dateTotalMap[currentDate] = yearVal
  1646. // 最大最小值
  1647. if tmpVal < minValue {
  1648. minValue = tmpVal
  1649. }
  1650. if tmpVal > maxValue {
  1651. maxValue = tmpVal
  1652. }
  1653. }
  1654. return
  1655. }
  1656. // getYearListBySeasonConf 根据配置获取年份列表
  1657. func getYearListBySeasonConf(configValue string) (yearList []int, seasonConf SeasonConf, err error) {
  1658. tmpErr := json.Unmarshal([]byte(configValue), &seasonConf)
  1659. if tmpErr != nil {
  1660. err = errors.New("年份配置信息异常:" + tmpErr.Error())
  1661. return
  1662. }
  1663. //选择方式,1:连续N年;2:指定年份
  1664. if seasonConf.YearType == 1 {
  1665. if seasonConf.NValue < 1 {
  1666. err = errors.New("连续N年不允许小于1")
  1667. return
  1668. }
  1669. currYear := time.Now().Year()
  1670. for i := 0; i < seasonConf.NValue; i++ {
  1671. yearList = append(yearList, currYear-i-1)
  1672. }
  1673. } else {
  1674. yearList = seasonConf.YearList
  1675. }
  1676. return
  1677. }
  1678. // GetChartPredictEdbInfoDataListByRuleDynamicYOYComparisonOrDifference 动态同比
  1679. // 2、指标选择范围为预测指标。
  1680. // 3、动态同比计算方法:预测值=去年同期值*(1+同比指标预测值)
  1681. // 4、上述“去年同期”如果没有严格对应的日期,则前后查找最近35天的值。
  1682. // 5、选择的同比指标日期需要与预测指标未来日期对应上,对应不上的不生成预测值。
  1683. func GetChartPredictEdbInfoDataListByRuleDynamicYOYComparisonOrDifference(ruleType, edbInfoId int, configValue string, dayList []time.Time, realPredictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
  1684. //预测指标的去年同期数据
  1685. baseDynamicDataList := make(map[string]decimal.Decimal, len(dayList))
  1686. //动态同比同差指标
  1687. DynamicCalculateDataList := make(map[string]decimal.Decimal, len(dayList))
  1688. index := len(realPredictEdbInfoData)
  1689. if index <= 0 {
  1690. return
  1691. }
  1692. dynamicYOYComparisonIndexId, err := strconv.Atoi(configValue)
  1693. if err != nil {
  1694. return
  1695. }
  1696. newPredictEdbInfoData = make([]*EdbInfoSearchData, 0, len(dayList))
  1697. // 获取同比预测指标的预测数据
  1698. dynamicYOYComparisonIndex, err := GetEdbInfoById(dynamicYOYComparisonIndexId)
  1699. if err != nil {
  1700. return
  1701. }
  1702. if dynamicYOYComparisonIndex.EdbInfoType != 1 {
  1703. err = errors.New("选择的指标不是预测指标")
  1704. return
  1705. }
  1706. startDate, endDate := dayList[0].Format(utils.FormatDate), dayList[len(dayList)-1].Format(utils.FormatDate)
  1707. //获取动态同比指标对应预测日期的预测数据
  1708. dynamicYOYComparisonIndexDataList, err := GetEdbDataList(dynamicYOYComparisonIndex.Source, dynamicYOYComparisonIndex.SubSource, dynamicYOYComparisonIndex.EdbInfoId, startDate, endDate)
  1709. if err != nil {
  1710. return
  1711. }
  1712. if len(dynamicYOYComparisonIndexDataList) <= 0 {
  1713. return
  1714. } else {
  1715. for _, v := range dynamicYOYComparisonIndexDataList {
  1716. DynamicCalculateDataList[v.DataTime] = decimal.NewFromFloat(v.Value)
  1717. }
  1718. }
  1719. var predictDayList []time.Time
  1720. //获取上一期的同期数据
  1721. for _, date := range dayList {
  1722. preDate := date.AddDate(-1, 0, 0)
  1723. preDateStr := preDate.Format(utils.FormatDate)
  1724. if preValue, ok := existMap[preDateStr]; ok { //上一年同期找到
  1725. baseDynamicDataList[preDateStr] = decimal.NewFromFloat(preValue)
  1726. predictDayList = append(predictDayList, date)
  1727. } else {
  1728. if replaceValue, replaceOk := getReplaceValue(existMap, 35, 1, -1, preDate); !replaceOk {
  1729. continue
  1730. } else {
  1731. baseDynamicDataList[preDateStr] = replaceValue
  1732. predictDayList = append(predictDayList, date)
  1733. }
  1734. }
  1735. }
  1736. //获取后面的预测数据
  1737. for k, currentDate := range predictDayList {
  1738. var calculateValue decimal.Decimal
  1739. var dateStr = currentDate.Format(utils.FormatDate)
  1740. preDate := currentDate.AddDate(-1, 0, 0)
  1741. preDateStr := preDate.Format(utils.FormatDate)
  1742. _, dynamicVal := DynamicCalculateDataList[dateStr]
  1743. _, baseVal := baseDynamicDataList[preDateStr]
  1744. if dynamicVal && baseVal {
  1745. switch ruleType {
  1746. case 17:
  1747. calculateValue = baseDynamicDataList[preDateStr].Mul(DynamicCalculateDataList[dateStr].Add(decimal.NewFromInt(1)))
  1748. case 18:
  1749. calculateValue = baseDynamicDataList[preDateStr].Add(DynamicCalculateDataList[dateStr])
  1750. default:
  1751. err = errors.New("计算规则不存在")
  1752. return
  1753. }
  1754. tmpData := &EdbInfoSearchData{
  1755. EdbDataId: edbInfoId + 100000 + index + k,
  1756. EdbInfoId: edbInfoId,
  1757. DataTime: currentDate.Format(utils.FormatDate),
  1758. DataTimestamp: currentDate.UnixNano() / 1e6,
  1759. }
  1760. var val = calculateValue.InexactFloat64()
  1761. tmpData.Value = val
  1762. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  1763. existMap[tmpData.DataTime] = val
  1764. if k == 0 {
  1765. minValue = val
  1766. maxValue = val
  1767. } else {
  1768. // 最大最小值
  1769. if val < minValue {
  1770. minValue = val
  1771. }
  1772. if val > maxValue {
  1773. maxValue = val
  1774. }
  1775. }
  1776. }
  1777. }
  1778. return
  1779. }
  1780. func getReplaceValue(replaceValueMap map[string]float64, days, dayStepForward int, dayStepBack int, currentDate time.Time) (replaceValue decimal.Decimal, success bool) {
  1781. nextDateDay := currentDate
  1782. backDateDay := currentDate
  1783. for i := 0; i <= days; i++ {
  1784. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  1785. if preValue, ok := replaceValueMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  1786. replaceValue = decimal.NewFromFloat(preValue)
  1787. success = true
  1788. return
  1789. }
  1790. backDateDayStr := backDateDay.Format(utils.FormatDate)
  1791. if backValue, ok := replaceValueMap[backDateDayStr]; ok { //上一年同期->下一个月找到
  1792. replaceValue = decimal.NewFromFloat(backValue)
  1793. success = true
  1794. return
  1795. }
  1796. nextDateDay = nextDateDay.AddDate(0, 0, dayStepForward)
  1797. backDateDay = nextDateDay.AddDate(0, 0, dayStepBack)
  1798. }
  1799. return decimal.NewFromInt(0), false
  1800. }