predict_edb.go 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409
  1. package logic
  2. import (
  3. "errors"
  4. "eta/eta_index_lib/models"
  5. "eta/eta_index_lib/utils"
  6. "fmt"
  7. "strconv"
  8. "strings"
  9. "time"
  10. )
  11. // AddPredictEdbInfo 新增预测指标
  12. func AddPredictEdbInfo(sourceEdbInfoId, classifyId int, edbName, dataDateType string, endDateType int, ruleList []models.RuleConfig, minValue, maxValue float64, sysUserId int, sysUserName, lang string) (edbInfo *models.EdbInfo, err error, errMsg string) {
  13. var sourceEdbInfo *models.EdbInfo
  14. // 来源指标信息校验
  15. {
  16. sourceEdbInfo, err = models.GetEdbInfoById(sourceEdbInfoId)
  17. if err != nil && !utils.IsErrNoRow(err) {
  18. errMsg = "新增失败"
  19. err = errors.New("获取来源指标失败,Err:" + err.Error())
  20. return
  21. }
  22. if sourceEdbInfo == nil {
  23. errMsg = "找不到该来源指标"
  24. err = errors.New(errMsg)
  25. return
  26. }
  27. //必须是普通的指标
  28. if sourceEdbInfo.EdbInfoType != 0 {
  29. errMsg = "来源指标异常,不是普通的指标"
  30. err = errors.New(errMsg)
  31. return
  32. }
  33. //if !utils.InArrayByStr([]string{"日度", "周度", "月度", "年度"}, sourceEdbInfo.Frequency) {
  34. // errMsg = "预测指标只支持选择日度、周度、月度、年度的指标"
  35. // err = errors.New(errMsg)
  36. // return
  37. //}
  38. }
  39. var classifyInfo *models.EdbClassify
  40. // 来源分类信息校验
  41. {
  42. classifyInfo, err = models.GetEdbClassifyById(classifyId)
  43. if err != nil && !utils.IsErrNoRow(err) {
  44. errMsg = "新增失败"
  45. err = errors.New("获取预测指标分类失败,Err:" + err.Error())
  46. return
  47. }
  48. if classifyInfo == nil {
  49. errMsg = "找不到该预测指标分类"
  50. err = errors.New(errMsg)
  51. return
  52. }
  53. //必须是预测指标分类
  54. if classifyInfo.ClassifyType != 1 {
  55. errMsg = "预测指标分类异常,不是预测指标分类"
  56. err = errors.New(errMsg)
  57. return
  58. }
  59. }
  60. edbName = strings.Trim(edbName, " ")
  61. edbCode := sourceEdbInfo.EdbCode + "_" + time.Now().Format(utils.FormatShortDateTimeUnSpace)
  62. // 根据指标名称和指标ID校验库中是否还存在其他同名指标
  63. existEdbName, err := CheckExistByEdbNameAndEdbInfoId(utils.PREDICT_EDB_INFO_TYPE, 0, edbName, lang)
  64. if err != nil {
  65. errMsg = "判断指标名称是否存在失败"
  66. err = errors.New("判断指标名称是否存在失败,Err:" + err.Error())
  67. return
  68. }
  69. if existEdbName {
  70. errMsg = "指标名称已存在,请重新填写"
  71. err = errors.New(errMsg)
  72. return
  73. }
  74. timestamp := strconv.FormatInt(time.Now().UnixNano(), 10)
  75. if dataDateType == `` {
  76. dataDateType = `自然日`
  77. }
  78. edbInfo = &models.EdbInfo{
  79. //EdbInfoId: 0,
  80. EdbInfoType: 1,
  81. SourceName: "预测指标",
  82. Source: utils.DATA_SOURCE_PREDICT,
  83. EdbCode: edbCode,
  84. EdbName: edbName,
  85. EdbNameSource: edbName,
  86. Frequency: sourceEdbInfo.Frequency,
  87. Unit: sourceEdbInfo.Unit,
  88. StartDate: sourceEdbInfo.StartDate,
  89. ClassifyId: classifyId,
  90. SysUserId: sysUserId,
  91. SysUserRealName: sysUserName,
  92. UniqueCode: utils.MD5(utils.DATA_PREFIX + "_" + timestamp),
  93. CreateTime: time.Now(),
  94. ModifyTime: time.Now(),
  95. MinValue: minValue,
  96. MaxValue: maxValue,
  97. CalculateFormula: sourceEdbInfo.CalculateFormula,
  98. EdbType: 1,
  99. //Sort: sourceEdbInfo.,
  100. LatestDate: sourceEdbInfo.LatestDate,
  101. LatestValue: sourceEdbInfo.LatestValue,
  102. MoveType: sourceEdbInfo.MoveType,
  103. MoveFrequency: sourceEdbInfo.MoveFrequency,
  104. NoUpdate: sourceEdbInfo.NoUpdate,
  105. ServerUrl: "",
  106. EdbNameEn: edbName,
  107. UnitEn: sourceEdbInfo.UnitEn,
  108. DataDateType: dataDateType,
  109. Sort: models.GetAddEdbMaxSortByClassifyId(classifyId, utils.PREDICT_EDB_INFO_TYPE),
  110. EndDateType: endDateType,
  111. }
  112. // 关联关系表
  113. calculateMappingList := make([]*models.EdbInfoCalculateMapping, 0)
  114. fromEdbMap := make(map[int]int)
  115. // 源指标关联关系表
  116. calculateMappingItem := &models.EdbInfoCalculateMapping{
  117. //EdbInfoCalculateMappingId: 0,
  118. //EdbInfoId: 0,
  119. Source: edbInfo.Source,
  120. SourceName: edbInfo.SourceName,
  121. EdbCode: edbInfo.EdbCode,
  122. FromEdbInfoId: sourceEdbInfo.EdbInfoId,
  123. FromEdbCode: sourceEdbInfo.EdbCode,
  124. FromEdbName: sourceEdbInfo.EdbName,
  125. FromSource: sourceEdbInfo.Source,
  126. FromSourceName: sourceEdbInfo.SourceName,
  127. //FromTag: "",
  128. Sort: 1,
  129. CreateTime: time.Now(),
  130. ModifyTime: time.Now(),
  131. }
  132. fromEdbMap[sourceEdbInfoId] = sourceEdbInfoId
  133. calculateMappingList = append(calculateMappingList, calculateMappingItem)
  134. // 动态环差 计算列表
  135. calculateRuleMap := make(map[int]models.CalculateRule, 0)
  136. // 预测指标配置
  137. predictEdbConfList := make([]*models.PredictEdbConf, 0)
  138. var ruleEndDate time.Time
  139. for ruleIndex, v := range ruleList {
  140. if endDateType == 0 {
  141. // 预测指标配置
  142. ruleEndDate, err = time.ParseInLocation(utils.FormatDate, v.EndDate, time.Local)
  143. if err != nil {
  144. errMsg = "规则配置的截止日期异常,请重新填写"
  145. err = errors.New(errMsg)
  146. return
  147. }
  148. } else {
  149. if v.EndNum <= 0 {
  150. errMsg = "截止期数不正确,请输入大于等于1的整数"
  151. err = errors.New(errMsg)
  152. return
  153. }
  154. }
  155. //1:最新,2:固定值,3:同比,4:同差,5:环比,6:环差,7:N期移动均值,8:N期段线性外推值,9:动态环差,10:根据 给定终值后插值 规则获取预测数据,11:根据 季节性 规则获取预测数据,12:根据 移动平均同比 规则获取预测数据
  156. // 环比、环差、动态环差、季节性、移动平均同比不支持年度
  157. if sourceEdbInfo.Frequency == "年度" && utils.InArrayByInt([]int{5, 6, 11, 12}, v.RuleType) {
  158. errMsg = "环比、环差、动态环差、季节性、移动平均同比不支持年度指标"
  159. err = errors.New(errMsg)
  160. return
  161. }
  162. if v.RuleType == 16 && endDateType == 1 {
  163. errMsg = "年度值倒推不支持截止期数"
  164. err = errors.New(errMsg)
  165. return
  166. }
  167. switch v.RuleType {
  168. case 8: //N期段线性外推值
  169. valInt, tmpErr := strconv.Atoi(v.Value)
  170. if tmpErr != nil {
  171. errMsg = "N期段线性外推值的N值异常"
  172. err = errors.New(errMsg)
  173. return
  174. }
  175. if valInt <= 1 {
  176. errMsg = "N期段线性外推值的N值必须大于1"
  177. err = errors.New(errMsg)
  178. return
  179. }
  180. case 9: //9:动态环差
  181. if v.Value == "" {
  182. errMsg = "请填写计算规则"
  183. err = errors.New(errMsg)
  184. return
  185. }
  186. formula := v.Value
  187. formula = strings.Replace(formula, "(", "(", -1)
  188. formula = strings.Replace(formula, ")", ")", -1)
  189. formula = strings.Replace(formula, ",", ",", -1)
  190. formula = strings.Replace(formula, "。", ".", -1)
  191. formula = strings.Replace(formula, "%", "*0.01", -1)
  192. v.Value = formula
  193. //检验公式
  194. var formulaStr string
  195. var edbInfoIdBytes []string
  196. for _, tmpEdbInfoId := range v.EdbInfoIdArr {
  197. formulaStr += tmpEdbInfoId.FromTag + ","
  198. edbInfoIdBytes = append(edbInfoIdBytes, tmpEdbInfoId.FromTag)
  199. }
  200. formulaSlice, tErr := utils.CheckFormulaJson(formula)
  201. if tErr != nil {
  202. errMsg = "公式格式错误,请重新填写"
  203. err = errors.New(errMsg)
  204. return
  205. }
  206. for _, fm := range formulaSlice {
  207. formulaMap, e := utils.CheckFormula(fm)
  208. if e != nil {
  209. err = fmt.Errorf("公式错误,请重新填写")
  210. return
  211. }
  212. for _, f := range formulaMap {
  213. if !strings.Contains(formulaStr, f) {
  214. errMsg = "公式错误,请重新填写"
  215. err = errors.New(errMsg)
  216. return
  217. }
  218. }
  219. }
  220. //关联的指标信息
  221. edbInfoList := make([]*models.EdbInfo, 0)
  222. // 动态环差规则 关系表
  223. trendsMappingList := make([]*models.PredictEdbConfCalculateMapping, 0)
  224. for k, tmpEdbInfoId := range v.EdbInfoIdArr {
  225. fromEdbInfo, tmpErr := models.GetEdbInfoById(tmpEdbInfoId.EdbInfoId)
  226. if tmpErr != nil {
  227. err = tmpErr
  228. if err.Error() == utils.ErrNoRow() {
  229. errMsg = "指标 " + strconv.Itoa(tmpEdbInfoId.EdbInfoId) + " 不存在"
  230. err = errors.New(errMsg)
  231. return
  232. }
  233. errMsg = "获取指标失败:Err:" + err.Error()
  234. err = errors.New(errMsg)
  235. return
  236. }
  237. edbInfoList = append(edbInfoList, fromEdbInfo)
  238. //总的 预测指标与所有相关联指标的关系表(不仅仅该条规则)
  239. {
  240. if _, ok := fromEdbMap[tmpEdbInfoId.EdbInfoId]; !ok {
  241. fromEdbMap[tmpEdbInfoId.EdbInfoId] = tmpEdbInfoId.EdbInfoId
  242. calculateMappingItem := &models.EdbInfoCalculateMapping{
  243. EdbInfoCalculateMappingId: 0,
  244. EdbInfoId: 0,
  245. Source: edbInfo.Source,
  246. SourceName: edbInfo.SourceName,
  247. EdbCode: "",
  248. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  249. FromEdbCode: fromEdbInfo.EdbCode,
  250. FromEdbName: fromEdbInfo.EdbName,
  251. FromSource: fromEdbInfo.Source,
  252. FromSourceName: fromEdbInfo.SourceName,
  253. //FromTag: tmpEdbInfoId.FromTag,
  254. Sort: k + 1,
  255. CreateTime: time.Now(),
  256. ModifyTime: time.Now(),
  257. }
  258. calculateMappingList = append(calculateMappingList, calculateMappingItem)
  259. }
  260. }
  261. // 动态环差规则 关系表
  262. tmpPredictEdbConfCalculateMapping := &models.PredictEdbConfCalculateMapping{
  263. //PredictEdbConfCalculateMappingId: 0,
  264. EdbInfoId: 0,
  265. ConfigId: 0,
  266. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  267. FromEdbCode: fromEdbInfo.EdbCode,
  268. FromEdbName: fromEdbInfo.EdbName,
  269. FromSource: fromEdbInfo.Source,
  270. FromSourceName: fromEdbInfo.SourceName,
  271. FromTag: tmpEdbInfoId.FromTag,
  272. Sort: k + 1,
  273. CreateTime: time.Now(),
  274. ModifyTime: time.Now(),
  275. }
  276. trendsMappingList = append(trendsMappingList, tmpPredictEdbConfCalculateMapping)
  277. }
  278. for _, f := range formulaSlice {
  279. formulaMap, e := utils.CheckFormula(f)
  280. if e != nil {
  281. err = fmt.Errorf("公式错误,请重新填写")
  282. return
  283. }
  284. //预先计算,判断公式是否正常
  285. ok, _ := models.CheckFormula2(edbInfoList, formulaMap, f, edbInfoIdBytes)
  286. if !ok {
  287. errMsg = "生成计算指标失败,请使用正确的计算公式"
  288. err = errors.New(errMsg)
  289. return
  290. }
  291. }
  292. calculateRuleMap[ruleIndex] = models.CalculateRule{
  293. TrendsCalculateMappingList: trendsMappingList,
  294. EdbInfoList: edbInfoList,
  295. EdbInfoIdBytes: edbInfoIdBytes,
  296. Formula: formula,
  297. RuleType: v.RuleType,
  298. EndDate: v.EndDate,
  299. EdbInfoIdArr: v.EdbInfoIdArr,
  300. }
  301. case 14: //14:根据 一元线性拟合 规则获取预测数据
  302. if v.Value == "" {
  303. errMsg = "请填写一元线性拟合规则"
  304. err = errors.New(errMsg)
  305. return
  306. }
  307. //关联的指标信息
  308. edbInfoList := make([]*models.EdbInfo, 0)
  309. // 动态环差规则 关系表
  310. trendsMappingList := make([]*models.PredictEdbConfCalculateMapping, 0)
  311. for k, tmpEdbInfoId := range v.EdbInfoIdArr {
  312. fromEdbInfo, tmpErr := models.GetEdbInfoById(tmpEdbInfoId.EdbInfoId)
  313. if tmpErr != nil {
  314. err = tmpErr
  315. if err.Error() == utils.ErrNoRow() {
  316. errMsg = "指标 " + strconv.Itoa(tmpEdbInfoId.EdbInfoId) + " 不存在"
  317. err = errors.New(errMsg)
  318. return
  319. }
  320. errMsg = "获取指标失败:Err:" + err.Error()
  321. err = errors.New(errMsg)
  322. return
  323. }
  324. edbInfoList = append(edbInfoList, fromEdbInfo)
  325. //总的 预测指标与所有相关联指标的关系表(不仅仅该条规则)
  326. {
  327. if _, ok := fromEdbMap[tmpEdbInfoId.EdbInfoId]; !ok {
  328. fromEdbMap[tmpEdbInfoId.EdbInfoId] = tmpEdbInfoId.EdbInfoId
  329. tmpCalculateMappingItem := &models.EdbInfoCalculateMapping{
  330. EdbInfoCalculateMappingId: 0,
  331. EdbInfoId: 0,
  332. Source: edbInfo.Source,
  333. SourceName: edbInfo.SourceName,
  334. EdbCode: "",
  335. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  336. FromEdbCode: fromEdbInfo.EdbCode,
  337. FromEdbName: fromEdbInfo.EdbName,
  338. FromSource: fromEdbInfo.Source,
  339. FromSourceName: fromEdbInfo.SourceName,
  340. //FromTag: tmpEdbInfoId.FromTag,
  341. Sort: k + 1,
  342. CreateTime: time.Now(),
  343. ModifyTime: time.Now(),
  344. }
  345. calculateMappingList = append(calculateMappingList, tmpCalculateMappingItem)
  346. }
  347. }
  348. // 动态环差规则 关系表
  349. tmpPredictEdbConfCalculateMapping := &models.PredictEdbConfCalculateMapping{
  350. //PredictEdbConfCalculateMappingId: 0,
  351. EdbInfoId: 0,
  352. ConfigId: 0,
  353. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  354. FromEdbCode: fromEdbInfo.EdbCode,
  355. FromEdbName: fromEdbInfo.EdbName,
  356. FromSource: fromEdbInfo.Source,
  357. FromSourceName: fromEdbInfo.SourceName,
  358. FromTag: tmpEdbInfoId.FromTag,
  359. Sort: k + 1,
  360. CreateTime: time.Now(),
  361. ModifyTime: time.Now(),
  362. }
  363. trendsMappingList = append(trendsMappingList, tmpPredictEdbConfCalculateMapping)
  364. }
  365. calculateRuleMap[ruleIndex] = models.CalculateRule{
  366. TrendsCalculateMappingList: trendsMappingList,
  367. EdbInfoList: edbInfoList,
  368. //EdbInfoIdBytes: edbInfoIdBytes,
  369. //Formula: formula,
  370. RuleType: v.RuleType,
  371. EndDate: v.EndDate,
  372. EdbInfoIdArr: v.EdbInfoIdArr,
  373. }
  374. case 17, 18:
  375. //关联的指标信息
  376. edbInfoList := make([]*models.EdbInfo, 0)
  377. // 动态环差规则 关系表
  378. trendsMappingList := make([]*models.PredictEdbConfCalculateMapping, 0)
  379. edbInfoId, parseErr := strconv.Atoi(v.Value)
  380. if parseErr != nil {
  381. errMsg = "请填写正确的指标id"
  382. err = errors.New(errMsg)
  383. return
  384. }
  385. fromEdbInfo, tmpErr := models.GetEdbInfoById(edbInfoId)
  386. if tmpErr != nil {
  387. err = tmpErr
  388. if err.Error() == utils.ErrNoRow() {
  389. errMsg = "指标 " + strconv.Itoa(edbInfoId) + " 不存在"
  390. err = errors.New(errMsg)
  391. return
  392. }
  393. errMsg = "获取指标失败:Err:" + err.Error()
  394. err = errors.New(errMsg)
  395. return
  396. }
  397. edbInfoList = append(edbInfoList, fromEdbInfo)
  398. //总的 预测指标与所有相关联指标的关系表(不仅仅该条规则)
  399. fromEdbMap[edbInfoId] = edbInfoId
  400. calculateMappingItem = &models.EdbInfoCalculateMapping{
  401. EdbInfoCalculateMappingId: 0,
  402. EdbInfoId: 0,
  403. Source: edbInfo.Source,
  404. SourceName: edbInfo.SourceName,
  405. EdbCode: "",
  406. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  407. FromEdbCode: fromEdbInfo.EdbCode,
  408. FromEdbName: fromEdbInfo.EdbName,
  409. FromSource: fromEdbInfo.Source,
  410. FromSourceName: fromEdbInfo.SourceName,
  411. //FromTag: tmpEdbInfoId.FromTag,
  412. Sort: 1,
  413. CreateTime: time.Now(),
  414. ModifyTime: time.Now(),
  415. }
  416. calculateMappingList = append(calculateMappingList, calculateMappingItem)
  417. // 动态同比同差规则 关系表
  418. tmpPredictEdbConfCalculateMapping := &models.PredictEdbConfCalculateMapping{
  419. //PredictEdbConfCalculateMappingId: 0,
  420. EdbInfoId: 0,
  421. ConfigId: 0,
  422. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  423. FromEdbCode: fromEdbInfo.EdbCode,
  424. FromEdbName: fromEdbInfo.EdbName,
  425. FromSource: fromEdbInfo.Source,
  426. FromSourceName: fromEdbInfo.SourceName,
  427. Sort: 1,
  428. CreateTime: time.Now(),
  429. ModifyTime: time.Now(),
  430. }
  431. trendsMappingList = append(trendsMappingList, tmpPredictEdbConfCalculateMapping)
  432. calculateRuleMap[ruleIndex] = models.CalculateRule{
  433. TrendsCalculateMappingList: trendsMappingList,
  434. EdbInfoList: edbInfoList,
  435. RuleType: v.RuleType,
  436. EndDate: v.EndDate,
  437. EdbInfoIdArr: v.EdbInfoIdArr,
  438. }
  439. }
  440. tmpPredictEdbConf := &models.PredictEdbConf{
  441. PredictEdbInfoId: 0,
  442. SourceEdbInfoId: sourceEdbInfoId,
  443. RuleType: v.RuleType,
  444. //FixedValue: v.Value,
  445. Value: v.Value,
  446. //EndDate: ruleEndDate,
  447. ModifyTime: time.Now(),
  448. CreateTime: time.Now(),
  449. EndNum: v.EndNum,
  450. }
  451. if endDateType == 0 {
  452. tmpPredictEdbConf.EndDate = ruleEndDate
  453. }
  454. //todo 指标最终的截止日期的更新
  455. edbInfo.EndDate = v.EndDate
  456. predictEdbConfList = append(predictEdbConfList, tmpPredictEdbConf)
  457. }
  458. err, errMsg = models.AddPredictEdb(edbInfo, calculateMappingList, predictEdbConfList, calculateRuleMap)
  459. return
  460. }
  461. // EditPredictEdbInfo 编辑预测指标
  462. func EditPredictEdbInfo(edbInfoId, classifyId int, edbName, dataDateType string, endDateType int, ruleList []models.RuleConfig, minValue, maxValue float64, lang string) (edbInfo *models.EdbInfo, err error, errMsg string) {
  463. // 指标信息校验
  464. {
  465. edbInfo, err = models.GetEdbInfoById(edbInfoId)
  466. if err != nil && !utils.IsErrNoRow(err) {
  467. errMsg = "修改失败"
  468. err = errors.New("获取预测指标失败,Err:" + err.Error())
  469. return
  470. }
  471. if edbInfo == nil {
  472. errMsg = "找不到该预测指标"
  473. err = errors.New(errMsg)
  474. return
  475. }
  476. //必须是普通的指标
  477. if edbInfo.EdbInfoType != 1 {
  478. errMsg = "指标异常,不是预测指标"
  479. err = errors.New(errMsg)
  480. return
  481. }
  482. }
  483. var predictEdbConf *models.PredictEdbConf
  484. // 指标配置信息校验
  485. {
  486. // 查找该预测指标配置
  487. predictEdbConfList, tmpErr := models.GetPredictEdbConfListById(edbInfo.EdbInfoId)
  488. if tmpErr != nil && !utils.IsErrNoRow(tmpErr) {
  489. errMsg = "修改失败"
  490. err = errors.New("获取预测指标配置信息失败,Err:" + tmpErr.Error())
  491. return
  492. }
  493. if len(predictEdbConfList) == 0 {
  494. errMsg = "找不到该预测指标配置"
  495. err = errors.New(errMsg)
  496. return
  497. }
  498. predictEdbConf = predictEdbConfList[0]
  499. }
  500. // 根据指标名称和指标ID校验库中是否还存在其他同名指标
  501. existEdbName, err := CheckExistByEdbNameAndEdbInfoId(utils.PREDICT_EDB_INFO_TYPE, edbInfoId, edbName, lang)
  502. if err != nil {
  503. errMsg = "判断指标名称是否存在失败"
  504. err = errors.New("判断指标名称是否存在失败,Err:" + err.Error())
  505. return
  506. }
  507. if existEdbName {
  508. errMsg = "指标名称已存在,请重新填写"
  509. err = errors.New(errMsg)
  510. return
  511. }
  512. if dataDateType == `` {
  513. dataDateType = `自然日`
  514. }
  515. switch lang {
  516. case utils.EnLangVersion:
  517. edbInfo.EdbNameEn = edbName
  518. default:
  519. edbInfo.EdbName = edbName
  520. }
  521. edbInfo.EdbNameSource = edbName
  522. edbInfo.ClassifyId = classifyId
  523. edbInfo.MinValue = minValue
  524. edbInfo.MaxValue = maxValue
  525. edbInfo.DataDateType = dataDateType
  526. edbInfo.ModifyTime = time.Now()
  527. edbInfo.EndDateType = endDateType
  528. updateEdbInfoCol := []string{"EdbName", "EdbNameEn", "EdbNameSource", "ClassifyId", "EndDate", "MinValue", "MaxValue", "DataDateType", "ModifyTime", "EndDateType"}
  529. var sourceEdbInfo *models.EdbInfo
  530. // 来源指标信息校验
  531. {
  532. sourceEdbInfo, err = models.GetEdbInfoById(predictEdbConf.SourceEdbInfoId)
  533. if err != nil && !utils.IsErrNoRow(err) {
  534. errMsg = "新增失败"
  535. err = errors.New("获取来源指标失败,Err:" + err.Error())
  536. return
  537. }
  538. if sourceEdbInfo == nil {
  539. errMsg = "找不到该来源指标"
  540. err = errors.New(errMsg)
  541. return
  542. }
  543. //必须是普通的指标
  544. if sourceEdbInfo.EdbInfoType != 0 {
  545. errMsg = "来源指标异常,不是普通的指标"
  546. err = errors.New(errMsg)
  547. return
  548. }
  549. //if !utils.InArrayByStr([]string{"日度", "周度", "月度", "年度"}, sourceEdbInfo.Frequency) {
  550. // errMsg = "预测指标只支持选择日度、周度、月度、年度的指标"
  551. // err = errors.New(errMsg)
  552. // return
  553. //}
  554. }
  555. // 预测指标配置
  556. // 关联关系表
  557. calculateMappingList := make([]*models.EdbInfoCalculateMapping, 0)
  558. fromEdbMap := make(map[int]int)
  559. // 源指标关联关系表
  560. calculateMappingItem := &models.EdbInfoCalculateMapping{
  561. //EdbInfoCalculateMappingId: 0,
  562. EdbInfoId: edbInfoId,
  563. Source: edbInfo.Source,
  564. SourceName: edbInfo.SourceName,
  565. EdbCode: edbInfo.EdbCode,
  566. FromEdbInfoId: sourceEdbInfo.EdbInfoId,
  567. FromEdbCode: sourceEdbInfo.EdbCode,
  568. FromEdbName: sourceEdbInfo.EdbName,
  569. FromSource: sourceEdbInfo.Source,
  570. FromSourceName: sourceEdbInfo.SourceName,
  571. //FromTag: "",
  572. Sort: 1,
  573. CreateTime: time.Now(),
  574. ModifyTime: time.Now(),
  575. }
  576. fromEdbMap[sourceEdbInfo.EdbInfoId] = sourceEdbInfo.EdbInfoId
  577. calculateMappingList = append(calculateMappingList, calculateMappingItem)
  578. // 动态环差 计算列表
  579. calculateRuleMap := make(map[int]models.CalculateRule, 0)
  580. // 预测指标配置
  581. predictEdbConfList := make([]*models.PredictEdbConf, 0)
  582. for ruleIndex, v := range ruleList {
  583. var ruleEndDate time.Time
  584. if endDateType == 0 {
  585. // 预测指标配置
  586. ruleEndDate, err = time.ParseInLocation(utils.FormatDate, v.EndDate, time.Local)
  587. if err != nil {
  588. errMsg = "规则配置的截止日期异常,请重新填写"
  589. err = errors.New(errMsg)
  590. return
  591. }
  592. } else {
  593. if v.EndNum <= 0 {
  594. errMsg = "截止期数不正确,请输入大于等于1的整数"
  595. err = errors.New(errMsg)
  596. return
  597. }
  598. }
  599. //1:最新,2:固定值,3:同比,4:同差,5:环比,6:环差,7:N期移动均值,8:N期段线性外推值,9:动态环差,10:根据 给定终值后插值 规则获取预测数据,11:根据 季节性 规则获取预测数据,12:根据 移动平均同比 规则获取预测数据
  600. // 环比、环差、动态环差、季节性、移动平均同比不支持年度
  601. if sourceEdbInfo.Frequency == "年度" && utils.InArrayByInt([]int{5, 6, 11, 12}, v.RuleType) {
  602. errMsg = "环比、环差、动态环差、季节性、移动平均同比不支持年度指标"
  603. err = errors.New(errMsg)
  604. return
  605. }
  606. if v.RuleType == 16 && endDateType == 1 {
  607. errMsg = "年度值倒推不支持截止期数"
  608. err = errors.New(errMsg)
  609. return
  610. }
  611. switch v.RuleType {
  612. case 8: //N期段线性外推值
  613. valInt, tmpErr := strconv.Atoi(v.Value)
  614. if tmpErr != nil {
  615. errMsg = "N期段线性外推值的N值异常"
  616. err = errors.New(errMsg)
  617. return
  618. }
  619. if valInt <= 1 {
  620. errMsg = "N期段线性外推值的N值必须大于1"
  621. err = errors.New(errMsg)
  622. return
  623. }
  624. case 9: //9:动态环差
  625. if v.Value == "" {
  626. errMsg = "请填写计算规则"
  627. err = errors.New(errMsg)
  628. return
  629. }
  630. formula := v.Value
  631. formula = strings.Replace(formula, "(", "(", -1)
  632. formula = strings.Replace(formula, ")", ")", -1)
  633. formula = strings.Replace(formula, ",", ",", -1)
  634. formula = strings.Replace(formula, "。", ".", -1)
  635. formula = strings.Replace(formula, "%", "*0.01", -1)
  636. v.Value = formula
  637. //检验公式
  638. var formulaStr string
  639. var edbInfoIdBytes []string
  640. for _, tmpEdbInfoId := range v.EdbInfoIdArr {
  641. formulaStr += tmpEdbInfoId.FromTag + ","
  642. edbInfoIdBytes = append(edbInfoIdBytes, tmpEdbInfoId.FromTag)
  643. }
  644. formulaSlice, tErr := utils.CheckFormulaJson(formula)
  645. if tErr != nil {
  646. errMsg = "公式格式错误,请重新填写"
  647. err = errors.New(errMsg)
  648. return
  649. }
  650. for _, fm := range formulaSlice {
  651. formulaMap, e := utils.CheckFormula(fm)
  652. if e != nil {
  653. err = fmt.Errorf("公式错误,请重新填写")
  654. return
  655. }
  656. for _, f := range formulaMap {
  657. if !strings.Contains(formulaStr, f) {
  658. errMsg = "公式错误,请重新填写"
  659. err = errors.New(errMsg)
  660. return
  661. }
  662. }
  663. }
  664. //关联的指标信息
  665. edbInfoList := make([]*models.EdbInfo, 0)
  666. // 动态环差规则 关系表
  667. trendsMappingList := make([]*models.PredictEdbConfCalculateMapping, 0)
  668. for k, tmpEdbInfoId := range v.EdbInfoIdArr {
  669. fromEdbInfo, tmpErr := models.GetEdbInfoById(tmpEdbInfoId.EdbInfoId)
  670. if tmpErr != nil {
  671. err = tmpErr
  672. if err.Error() == utils.ErrNoRow() {
  673. errMsg = "指标 " + strconv.Itoa(tmpEdbInfoId.EdbInfoId) + " 不存在"
  674. err = errors.New(errMsg)
  675. return
  676. }
  677. errMsg = "获取指标失败:Err:" + err.Error()
  678. err = errors.New(errMsg)
  679. return
  680. }
  681. edbInfoList = append(edbInfoList, fromEdbInfo)
  682. //总的 预测指标与所有相关联指标的关系表(不仅仅该条规则)
  683. {
  684. if _, ok := fromEdbMap[tmpEdbInfoId.EdbInfoId]; !ok {
  685. fromEdbMap[tmpEdbInfoId.EdbInfoId] = tmpEdbInfoId.EdbInfoId
  686. calculateMappingItem := &models.EdbInfoCalculateMapping{
  687. EdbInfoCalculateMappingId: 0,
  688. EdbInfoId: edbInfoId,
  689. Source: utils.DATA_SOURCE_CALCULATE,
  690. SourceName: "指标运算",
  691. EdbCode: "",
  692. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  693. FromEdbCode: fromEdbInfo.EdbCode,
  694. FromEdbName: fromEdbInfo.EdbName,
  695. FromSource: fromEdbInfo.Source,
  696. FromSourceName: fromEdbInfo.SourceName,
  697. //FromTag: tmpEdbInfoId.FromTag,
  698. Sort: k + 1,
  699. CreateTime: time.Now(),
  700. ModifyTime: time.Now(),
  701. }
  702. calculateMappingList = append(calculateMappingList, calculateMappingItem)
  703. }
  704. }
  705. // 动态环差规则 关系表
  706. tmpPredictEdbConfCalculateMapping := &models.PredictEdbConfCalculateMapping{
  707. //PredictEdbConfCalculateMappingId: 0,
  708. EdbInfoId: edbInfoId,
  709. ConfigId: 0,
  710. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  711. FromEdbCode: fromEdbInfo.EdbCode,
  712. FromEdbName: fromEdbInfo.EdbName,
  713. FromSource: fromEdbInfo.Source,
  714. FromSourceName: fromEdbInfo.SourceName,
  715. FromTag: tmpEdbInfoId.FromTag,
  716. Sort: k + 1,
  717. CreateTime: time.Now(),
  718. ModifyTime: time.Now(),
  719. }
  720. trendsMappingList = append(trendsMappingList, tmpPredictEdbConfCalculateMapping)
  721. }
  722. for _, f := range formulaSlice {
  723. formulaMap, e := utils.CheckFormula(f)
  724. if e != nil {
  725. err = fmt.Errorf("公式错误,请重新填写")
  726. return
  727. }
  728. //预先计算,判断公式是否正常
  729. ok, _ := models.CheckFormula2(edbInfoList, formulaMap, f, edbInfoIdBytes)
  730. if !ok {
  731. errMsg = "生成计算指标失败,请使用正确的计算公式"
  732. err = errors.New(errMsg)
  733. return
  734. }
  735. }
  736. calculateRuleMap[ruleIndex] = models.CalculateRule{
  737. TrendsCalculateMappingList: trendsMappingList,
  738. EdbInfoList: edbInfoList,
  739. EdbInfoIdBytes: edbInfoIdBytes,
  740. Formula: formula,
  741. RuleType: v.RuleType,
  742. EndDate: v.EndDate,
  743. EdbInfoIdArr: v.EdbInfoIdArr,
  744. }
  745. case 14: //14:根据 一元线性拟合 规则获取预测数据
  746. if v.Value == "" {
  747. errMsg = "请填写一元线性拟合规则"
  748. err = errors.New(errMsg)
  749. return
  750. }
  751. //关联的指标信息
  752. edbInfoList := make([]*models.EdbInfo, 0)
  753. // 动态环差规则 关系表
  754. trendsMappingList := make([]*models.PredictEdbConfCalculateMapping, 0)
  755. for k, tmpEdbInfoId := range v.EdbInfoIdArr {
  756. fromEdbInfo, tmpErr := models.GetEdbInfoById(tmpEdbInfoId.EdbInfoId)
  757. if tmpErr != nil {
  758. err = tmpErr
  759. if err.Error() == utils.ErrNoRow() {
  760. errMsg = "指标 " + strconv.Itoa(tmpEdbInfoId.EdbInfoId) + " 不存在"
  761. err = errors.New(errMsg)
  762. return
  763. }
  764. errMsg = "获取指标失败:Err:" + err.Error()
  765. err = errors.New(errMsg)
  766. return
  767. }
  768. edbInfoList = append(edbInfoList, fromEdbInfo)
  769. //总的 预测指标与所有相关联指标的关系表(不仅仅该条规则)
  770. {
  771. if _, ok := fromEdbMap[tmpEdbInfoId.EdbInfoId]; !ok {
  772. fromEdbMap[tmpEdbInfoId.EdbInfoId] = tmpEdbInfoId.EdbInfoId
  773. tmpCalculateMappingItem := &models.EdbInfoCalculateMapping{
  774. EdbInfoCalculateMappingId: 0,
  775. EdbInfoId: 0,
  776. Source: utils.DATA_SOURCE_CALCULATE,
  777. SourceName: "指标运算",
  778. EdbCode: "",
  779. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  780. FromEdbCode: fromEdbInfo.EdbCode,
  781. FromEdbName: fromEdbInfo.EdbName,
  782. FromSource: fromEdbInfo.Source,
  783. FromSourceName: fromEdbInfo.SourceName,
  784. //FromTag: tmpEdbInfoId.FromTag,
  785. Sort: k + 1,
  786. CreateTime: time.Now(),
  787. ModifyTime: time.Now(),
  788. }
  789. calculateMappingList = append(calculateMappingList, tmpCalculateMappingItem)
  790. }
  791. }
  792. // 动态环差规则 关系表
  793. tmpPredictEdbConfCalculateMapping := &models.PredictEdbConfCalculateMapping{
  794. //PredictEdbConfCalculateMappingId: 0,
  795. EdbInfoId: 0,
  796. ConfigId: 0,
  797. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  798. FromEdbCode: fromEdbInfo.EdbCode,
  799. FromEdbName: fromEdbInfo.EdbName,
  800. FromSource: fromEdbInfo.Source,
  801. FromSourceName: fromEdbInfo.SourceName,
  802. FromTag: tmpEdbInfoId.FromTag,
  803. Sort: k + 1,
  804. CreateTime: time.Now(),
  805. ModifyTime: time.Now(),
  806. }
  807. trendsMappingList = append(trendsMappingList, tmpPredictEdbConfCalculateMapping)
  808. }
  809. // todo
  810. calculateRuleMap[ruleIndex] = models.CalculateRule{
  811. TrendsCalculateMappingList: trendsMappingList,
  812. EdbInfoList: edbInfoList,
  813. //EdbInfoIdBytes: edbInfoIdBytes,
  814. //Formula: formula,
  815. RuleType: v.RuleType,
  816. EndDate: v.EndDate,
  817. EdbInfoIdArr: v.EdbInfoIdArr,
  818. }
  819. case 17, 18:
  820. //关联的指标信息
  821. edbInfoList := make([]*models.EdbInfo, 0)
  822. // 动态 关系表
  823. trendsMappingList := make([]*models.PredictEdbConfCalculateMapping, 0)
  824. relateEdbInfoId, parseErr := strconv.Atoi(v.Value)
  825. if parseErr != nil {
  826. errMsg = "请填写正确的指标id"
  827. err = errors.New(errMsg)
  828. return
  829. }
  830. fromEdbInfo, tmpErr := models.GetEdbInfoById(relateEdbInfoId)
  831. if tmpErr != nil {
  832. err = tmpErr
  833. if err.Error() == utils.ErrNoRow() {
  834. errMsg = "指标 " + strconv.Itoa(relateEdbInfoId) + " 不存在"
  835. err = errors.New(errMsg)
  836. return
  837. }
  838. errMsg = "获取指标失败:Err:" + err.Error()
  839. err = errors.New(errMsg)
  840. return
  841. }
  842. edbInfoList = append(edbInfoList, fromEdbInfo)
  843. //总的 预测指标与所有相关联指标的关系表(不仅仅该条规则)
  844. fromEdbMap[relateEdbInfoId] = relateEdbInfoId
  845. calculateMappingItem = &models.EdbInfoCalculateMapping{
  846. EdbInfoCalculateMappingId: 0,
  847. EdbInfoId: 0,
  848. Source: edbInfo.Source,
  849. SourceName: edbInfo.SourceName,
  850. EdbCode: "",
  851. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  852. FromEdbCode: fromEdbInfo.EdbCode,
  853. FromEdbName: fromEdbInfo.EdbName,
  854. FromSource: fromEdbInfo.Source,
  855. FromSourceName: fromEdbInfo.SourceName,
  856. //FromTag: tmpEdbInfoId.FromTag,
  857. Sort: 1,
  858. CreateTime: time.Now(),
  859. ModifyTime: time.Now(),
  860. }
  861. calculateMappingList = append(calculateMappingList, calculateMappingItem)
  862. // 动态同比同差规则 关系表
  863. tmpPredictEdbConfCalculateMapping := &models.PredictEdbConfCalculateMapping{
  864. //PredictEdbConfCalculateMappingId: 0,
  865. EdbInfoId: 0,
  866. ConfigId: 0,
  867. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  868. FromEdbCode: fromEdbInfo.EdbCode,
  869. FromEdbName: fromEdbInfo.EdbName,
  870. FromSource: fromEdbInfo.Source,
  871. FromSourceName: fromEdbInfo.SourceName,
  872. Sort: 1,
  873. CreateTime: time.Now(),
  874. ModifyTime: time.Now(),
  875. }
  876. trendsMappingList = append(trendsMappingList, tmpPredictEdbConfCalculateMapping)
  877. calculateRuleMap[ruleIndex] = models.CalculateRule{
  878. TrendsCalculateMappingList: trendsMappingList,
  879. EdbInfoList: edbInfoList,
  880. RuleType: v.RuleType,
  881. EndDate: v.EndDate,
  882. EdbInfoIdArr: v.EdbInfoIdArr,
  883. }
  884. }
  885. tmpPredictEdbConf := &models.PredictEdbConf{
  886. PredictEdbInfoId: edbInfoId,
  887. SourceEdbInfoId: sourceEdbInfo.EdbInfoId,
  888. RuleType: v.RuleType,
  889. //FixedValue: v.Value,
  890. Value: v.Value,
  891. EndDate: ruleEndDate,
  892. EndNum: v.EndNum,
  893. ModifyTime: time.Now(),
  894. CreateTime: time.Now(),
  895. }
  896. if endDateType == 0 {
  897. tmpPredictEdbConf.EndDate = ruleEndDate
  898. }
  899. // todo
  900. edbInfo.EndDate = v.EndDate
  901. predictEdbConfList = append(predictEdbConfList, tmpPredictEdbConf)
  902. }
  903. err, errMsg = models.EditPredictEdb(edbInfo, updateEdbInfoCol, calculateMappingList, predictEdbConfList, calculateRuleMap)
  904. return
  905. }
  906. // RefreshPredictEdbInfo 更新基础预测指标规则中的动态数据
  907. func RefreshPredictEdbInfo(edbInfoId int) (edbInfo *models.EdbInfo, err error, errMsg string) {
  908. // 指标信息校验
  909. {
  910. edbInfo, err = models.GetEdbInfoById(edbInfoId)
  911. if err != nil && !utils.IsErrNoRow(err) {
  912. errMsg = "刷新失败"
  913. err = errors.New("获取预测指标失败,Err:" + err.Error())
  914. return
  915. }
  916. if edbInfo == nil {
  917. errMsg = "找不到该预测指标"
  918. err = nil
  919. return
  920. }
  921. //必须是普通的指标
  922. if edbInfo.EdbInfoType != 1 {
  923. errMsg = "指标异常,不是预测指标"
  924. return
  925. }
  926. }
  927. // 配置 与 指标的 关联关系表
  928. list, err := models.GetPredictEdbConfCalculateMappingListByEdbInfoId(edbInfoId)
  929. if err != nil {
  930. return
  931. }
  932. // 没有关联指标,不需要刷新
  933. if len(list) <= 0 {
  934. return
  935. }
  936. // 配置关联的指标信息
  937. predictEdbConfCalculateMappingListMap := make(map[int][]*models.PredictEdbConfCalculateMapping)
  938. configIdList := make([]int, 0) //关联配置id
  939. edbInfoIdList := make([]int, 0) //关联指标配置id
  940. edbInfoIdMap := make(map[int]int, 0) //关联指标配置map
  941. for _, v := range list {
  942. configList, ok := predictEdbConfCalculateMappingListMap[v.ConfigId]
  943. if !ok {
  944. configList = make([]*models.PredictEdbConfCalculateMapping, 0)
  945. configIdList = append(configIdList, v.ConfigId)
  946. }
  947. if _, ok := edbInfoIdMap[v.FromEdbInfoId]; !ok {
  948. edbInfoIdList = append(edbInfoIdList, v.FromEdbInfoId)
  949. }
  950. configList = append(configList, v)
  951. predictEdbConfCalculateMappingListMap[v.ConfigId] = configList
  952. }
  953. predictEdbConfList, err := models.GetPredictEdbConfListByConfigIdList(configIdList)
  954. if err != nil {
  955. errMsg = "刷新失败"
  956. err = errors.New("获取预测指标配置信息失败,Err:" + err.Error())
  957. return
  958. }
  959. if len(predictEdbConfList) == 0 {
  960. errMsg = "找不到该预测指标配置"
  961. err = nil
  962. return
  963. }
  964. // 指标信息
  965. edbInfoList, err := models.GetEdbInfoByIdList(edbInfoIdList)
  966. if err != nil {
  967. err = errors.New("获取关联指标失败,Err:" + err.Error())
  968. return
  969. }
  970. // 指标信息map
  971. edbInfoListMap := make(map[int]*models.EdbInfo)
  972. for _, v := range edbInfoList {
  973. edbInfoListMap[v.EdbInfoId] = v
  974. }
  975. predictEdbConfAndDataList := make([]*models.PredictEdbConfAndData, 0)
  976. // 刷新所有的规则
  977. for _, v := range predictEdbConfList {
  978. // 每次规则计算的时候,产生的临时数据
  979. resultDataList := make([]*models.EdbInfoSearchData, 0)
  980. switch v.RuleType {
  981. case 9: //动态环差值
  982. if v.Value == "" {
  983. errMsg = "请填写计算规则"
  984. return
  985. }
  986. // todo 动态环差的空值类型处理
  987. formula := v.Value
  988. // 动态环差规则 关系表
  989. trendsMappingList := predictEdbConfCalculateMappingListMap[v.ConfigId]
  990. // 关联标签
  991. edbInfoIdArr := make([]models.EdbInfoFromTag, 0)
  992. //关联的指标信息
  993. edbInfoList := make([]*models.EdbInfo, 0)
  994. for _, trendsMapping := range trendsMappingList {
  995. tmpEdbInfo, ok := edbInfoListMap[trendsMapping.FromEdbInfoId]
  996. if ok {
  997. edbInfoList = append(edbInfoList, tmpEdbInfo)
  998. }
  999. // 关联标签
  1000. edbInfoIdArr = append(edbInfoIdArr, models.EdbInfoFromTag{
  1001. EdbInfoId: trendsMapping.FromEdbInfoId,
  1002. FromTag: trendsMapping.FromTag,
  1003. })
  1004. }
  1005. //检验公式
  1006. var formulaStr string
  1007. var edbInfoIdBytes []string
  1008. for _, tmpEdbInfoId := range edbInfoIdArr {
  1009. formulaStr += tmpEdbInfoId.FromTag + ","
  1010. edbInfoIdBytes = append(edbInfoIdBytes, tmpEdbInfoId.FromTag)
  1011. }
  1012. formulaSlice, tErr := utils.CheckFormulaJson(formula)
  1013. if tErr != nil {
  1014. errMsg = "公式格式错误,请重新填写"
  1015. err = errors.New(errMsg)
  1016. return
  1017. }
  1018. for _, fm := range formulaSlice {
  1019. formulaMap, e := utils.CheckFormula(fm)
  1020. if e != nil {
  1021. err = fmt.Errorf("公式错误,请重新填写")
  1022. return
  1023. }
  1024. for _, f := range formulaMap {
  1025. if !strings.Contains(formulaStr, f) {
  1026. errMsg = "公式错误,请重新填写"
  1027. err = errors.New(errMsg)
  1028. return
  1029. }
  1030. }
  1031. //预先计算,判断公式是否正常
  1032. ok, _ := models.CheckFormula2(edbInfoList, formulaMap, fm, edbInfoIdBytes)
  1033. if !ok {
  1034. errMsg = "生成计算指标失败,请使用正确的计算公式"
  1035. return
  1036. }
  1037. }
  1038. rule := models.CalculateRule{
  1039. EdbInfoId: v.PredictEdbInfoId,
  1040. ConfigId: v.ConfigId,
  1041. TrendsCalculateMappingList: trendsMappingList,
  1042. EdbInfoList: edbInfoList,
  1043. EdbInfoIdBytes: edbInfoIdBytes,
  1044. Formula: formula,
  1045. RuleType: v.RuleType,
  1046. EndDate: v.EndDate.Format(utils.FormatDate),
  1047. EdbInfoIdArr: edbInfoIdArr,
  1048. }
  1049. resultDataList, err = models.RefreshCalculateByRuleBy9(rule)
  1050. if err != nil {
  1051. return
  1052. }
  1053. case 14: //14:根据 一元线性拟合 规则获取预测数据
  1054. if v.Value == "" {
  1055. errMsg = "一元线性拟合规则信息未配置"
  1056. return
  1057. }
  1058. err, errMsg = models.RefreshCalculateByRuleByLineNh(*edbInfo, predictEdbConfAndDataList, *v)
  1059. if err != nil {
  1060. return
  1061. }
  1062. }
  1063. // 规则配置(含数据)
  1064. tmpPredictEdbConfAndData := &models.PredictEdbConfAndData{
  1065. ConfigId: 0,
  1066. PredictEdbInfoId: 0,
  1067. SourceEdbInfoId: v.SourceEdbInfoId,
  1068. RuleType: v.RuleType,
  1069. FixedValue: v.FixedValue,
  1070. Value: v.Value,
  1071. EndDate: v.EndDate,
  1072. ModifyTime: v.ModifyTime,
  1073. CreateTime: v.CreateTime,
  1074. DataList: resultDataList,
  1075. }
  1076. predictEdbConfAndDataList = append(predictEdbConfAndDataList, tmpPredictEdbConfAndData)
  1077. }
  1078. return
  1079. }
  1080. // checkExistByEdbName
  1081. // @Description: 根据指标名称校验该指标是否存在库中
  1082. // @author: Roc
  1083. // @datetime 2024-04-18 14:58:52
  1084. // @param edbInfoType int
  1085. // @param edbName string
  1086. // @param lang string
  1087. // @return has bool
  1088. // @return err error
  1089. func checkExistByEdbName(edbInfoType int, edbName, lang string) (has bool, err error) {
  1090. var condition string
  1091. var pars []interface{}
  1092. condition += " AND edb_info_type=? "
  1093. pars = append(pars, edbInfoType)
  1094. switch lang {
  1095. case utils.EnLangVersion:
  1096. condition += " AND edb_name_en = ? "
  1097. default:
  1098. condition += " AND edb_name=? "
  1099. }
  1100. pars = append(pars, edbName)
  1101. count, err := models.GetEdbInfoCountByCondition(condition, pars)
  1102. if err != nil {
  1103. return
  1104. }
  1105. if count > 0 {
  1106. has = true
  1107. return
  1108. }
  1109. return
  1110. }
  1111. // checkExistByEdbNameAndEdbInfoId
  1112. // @Description: 根据指标名称和指标ID校验库中是否还存在其他同名指标
  1113. // @author: Roc
  1114. // @datetime 2024-04-18 15:00:19
  1115. // @param edbInfoType int
  1116. // @param edbInfoId int
  1117. // @param edbName string
  1118. // @param lang string
  1119. // @return has bool
  1120. // @return err error
  1121. func checkExistByEdbNameAndEdbInfoId(edbInfoType, edbInfoId int, edbName, lang string) (has bool, err error) {
  1122. var condition string
  1123. var pars []interface{}
  1124. condition += " AND edb_info_type=? "
  1125. pars = append(pars, edbInfoType)
  1126. condition += " AND edb_info_id<>? "
  1127. pars = append(pars, edbInfoId)
  1128. switch lang {
  1129. case utils.EnLangVersion:
  1130. condition += " AND edb_name_en = ? "
  1131. default:
  1132. condition += " AND edb_name=? "
  1133. }
  1134. pars = append(pars, edbName)
  1135. count, err := models.GetEdbInfoCountByCondition(condition, pars)
  1136. if err != nil {
  1137. return
  1138. }
  1139. if count > 0 {
  1140. has = true
  1141. return
  1142. }
  1143. return
  1144. }
  1145. // CheckExistByEdbNameAndEdbInfoId
  1146. // @Description: 根据指标名称和指标ID校验库中是否还存在其他同名指标
  1147. // @author: Roc
  1148. // @datetime 2024-04-18 15:01:44
  1149. // @param edbInfoType int
  1150. // @param edbInfoId int
  1151. // @param edbName string
  1152. // @param lang string
  1153. // @return has bool
  1154. // @return err error
  1155. func CheckExistByEdbNameAndEdbInfoId(edbInfoType, edbInfoId int, edbName, lang string) (has bool, err error) {
  1156. // 指标没有入库的情况
  1157. if edbInfoId == 0 {
  1158. return checkExistByEdbName(edbInfoType, edbName, lang)
  1159. }
  1160. //指标已经入库的情况
  1161. return checkExistByEdbNameAndEdbInfoId(edbInfoType, edbInfoId, edbName, lang)
  1162. }
  1163. // AddStaticPredictEdbInfo 新增静态指标数据
  1164. func AddStaticPredictEdbInfo(sourceEdbInfoId, classifyId int, edbName, frequency, unit string, sysUserId int, sysUserName, lang string) (edbInfo *models.EdbInfo, err error, errMsg string) {
  1165. var sourceEdbInfo *models.EdbInfo
  1166. // 来源指标信息校验
  1167. {
  1168. sourceEdbInfo, err = models.GetEdbInfoById(sourceEdbInfoId)
  1169. if err != nil && !utils.IsErrNoRow(err) {
  1170. errMsg = "新增失败"
  1171. err = errors.New("获取来源指标失败,Err:" + err.Error())
  1172. return
  1173. }
  1174. if sourceEdbInfo == nil {
  1175. errMsg = "找不到该来源指标"
  1176. err = errors.New(errMsg)
  1177. return
  1178. }
  1179. }
  1180. var classifyInfo *models.EdbClassify
  1181. // 来源分类信息校验
  1182. {
  1183. classifyInfo, err = models.GetEdbClassifyById(classifyId)
  1184. if err != nil && !utils.IsErrNoRow(err) {
  1185. errMsg = "新增失败"
  1186. err = errors.New("获取预测指标分类失败,Err:" + err.Error())
  1187. return
  1188. }
  1189. if classifyInfo == nil {
  1190. errMsg = "找不到该预测指标分类"
  1191. err = errors.New(errMsg)
  1192. return
  1193. }
  1194. //必须是预测指标分类
  1195. if classifyInfo.ClassifyType != 1 {
  1196. errMsg = "预测指标分类异常,不是预测指标分类"
  1197. err = errors.New(errMsg)
  1198. return
  1199. }
  1200. }
  1201. edbName = strings.Trim(edbName, " ")
  1202. edbCode := sourceEdbInfo.EdbCode + "_" + time.Now().Format(utils.FormatShortDateTimeUnSpace)
  1203. // 根据指标名称和指标ID校验库中是否还存在其他同名指标
  1204. existEdbName, err := CheckExistByEdbNameAndEdbInfoId(utils.PREDICT_EDB_INFO_TYPE, 0, edbName, lang)
  1205. if err != nil {
  1206. errMsg = "判断指标名称是否存在失败"
  1207. err = errors.New("判断指标名称是否存在失败,Err:" + err.Error())
  1208. return
  1209. }
  1210. if existEdbName {
  1211. errMsg = "指标名称已存在,请重新填写"
  1212. err = errors.New(errMsg)
  1213. return
  1214. }
  1215. timestamp := strconv.FormatInt(time.Now().UnixNano(), 10)
  1216. edbInfo = &models.EdbInfo{
  1217. //EdbInfoId: 0,
  1218. EdbInfoType: sourceEdbInfo.EdbInfoType,
  1219. SourceName: sourceEdbInfo.SourceName,
  1220. Source: sourceEdbInfo.Source,
  1221. EdbCode: edbCode,
  1222. EdbName: edbName,
  1223. EdbNameSource: edbName,
  1224. Frequency: frequency,
  1225. Unit: unit,
  1226. StartDate: sourceEdbInfo.StartDate,
  1227. EndDate: sourceEdbInfo.EndDate,
  1228. ClassifyId: classifyId,
  1229. SysUserId: sysUserId,
  1230. SysUserRealName: sysUserName,
  1231. UniqueCode: utils.MD5(utils.DATA_PREFIX + "_" + timestamp),
  1232. CreateTime: time.Now(),
  1233. ModifyTime: time.Now(),
  1234. MinValue: sourceEdbInfo.MinValue,
  1235. MaxValue: sourceEdbInfo.MaxValue,
  1236. EndValue: sourceEdbInfo.EndValue,
  1237. CalculateFormula: sourceEdbInfo.CalculateFormula,
  1238. EdbType: sourceEdbInfo.EdbType,
  1239. //Sort: sourceEdbInfo.,
  1240. LatestDate: sourceEdbInfo.LatestDate,
  1241. LatestValue: sourceEdbInfo.LatestValue,
  1242. MoveType: sourceEdbInfo.MoveType,
  1243. MoveFrequency: sourceEdbInfo.MoveFrequency,
  1244. NoUpdate: sourceEdbInfo.NoUpdate,
  1245. IsUpdate: sourceEdbInfo.IsUpdate,
  1246. ServerUrl: "",
  1247. EdbNameEn: edbName,
  1248. UnitEn: sourceEdbInfo.UnitEn,
  1249. DataDateType: sourceEdbInfo.DataDateType,
  1250. Sort: models.GetAddEdbMaxSortByClassifyId(classifyId, utils.PREDICT_EDB_INFO_TYPE),
  1251. IsStaticData: 1,
  1252. }
  1253. // 关联关系表
  1254. calculateMappingList := make([]*models.EdbInfoCalculateMapping, 0)
  1255. fromEdbMap := make(map[int]int)
  1256. // 源指标关联关系表
  1257. calculateMappingItem := &models.EdbInfoCalculateMapping{
  1258. //EdbInfoCalculateMappingId: 0,
  1259. //EdbInfoId: 0,
  1260. Source: edbInfo.Source,
  1261. SourceName: edbInfo.SourceName,
  1262. EdbCode: edbInfo.EdbCode,
  1263. FromEdbInfoId: sourceEdbInfo.EdbInfoId,
  1264. FromEdbCode: sourceEdbInfo.EdbCode,
  1265. FromEdbName: sourceEdbInfo.EdbName,
  1266. FromSource: sourceEdbInfo.Source,
  1267. FromSourceName: sourceEdbInfo.SourceName,
  1268. //FromTag: "",
  1269. Sort: 1,
  1270. CreateTime: time.Now(),
  1271. ModifyTime: time.Now(),
  1272. }
  1273. fromEdbMap[sourceEdbInfoId] = sourceEdbInfoId
  1274. calculateMappingList = append(calculateMappingList, calculateMappingItem)
  1275. newPredictEdbConfList := make([]*models.PredictEdbConf, 0)
  1276. //查询原先的预测指标配置项
  1277. if sourceEdbInfo.EdbType == 1 {
  1278. // 查找该预测指标配置
  1279. predictEdbConfList, tmpErr := models.GetPredictEdbConfListById(sourceEdbInfo.EdbInfoId)
  1280. if tmpErr != nil && !utils.IsErrNoRow(tmpErr) {
  1281. errMsg = "获取预测指标配置信息失败"
  1282. err = errors.New("获取预测指标配置信息失败,Err:" + tmpErr.Error())
  1283. return
  1284. }
  1285. if len(predictEdbConfList) > 0 {
  1286. // 遍历
  1287. for _, v := range predictEdbConfList {
  1288. tmpPredictEdbConf := &models.PredictEdbConf{
  1289. PredictEdbInfoId: 0,
  1290. SourceEdbInfoId: sourceEdbInfoId,
  1291. RuleType: v.RuleType,
  1292. FixedValue: v.FixedValue,
  1293. Value: v.Value,
  1294. EmptyType: v.EmptyType,
  1295. MaxEmptyType: v.MaxEmptyType,
  1296. EndDate: v.EndDate,
  1297. ModifyTime: time.Now(),
  1298. CreateTime: time.Now(),
  1299. }
  1300. newPredictEdbConfList = append(newPredictEdbConfList, tmpPredictEdbConf)
  1301. }
  1302. }
  1303. }
  1304. err, errMsg = models.AddPredictStaticEdb(edbInfo, sourceEdbInfo, calculateMappingList, newPredictEdbConfList)
  1305. return
  1306. }