predict_edb_info_rule.go 72 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979
  1. package models
  2. import (
  3. "encoding/json"
  4. "errors"
  5. "eta/eta_index_lib/utils"
  6. "fmt"
  7. "github.com/nosixtools/solarlunar"
  8. "github.com/shopspring/decimal"
  9. "math"
  10. "strconv"
  11. "strings"
  12. "time"
  13. )
  14. // GetChartPredictEdbInfoDataListByRule1 根据规则1获取预测数据
  15. func GetChartPredictEdbInfoDataListByRule1(edbInfoId int, dataValue float64, dayList []time.Time, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData) {
  16. newPredictEdbInfoData = predictEdbInfoData
  17. //获取后面的预测数据
  18. predictEdbInfoData = make([]*EdbInfoSearchData, 0)
  19. for k, v := range dayList {
  20. newPredictEdbInfoData = append(newPredictEdbInfoData, &EdbInfoSearchData{
  21. EdbDataId: edbInfoId + 10000000000 + k,
  22. DataTime: v.Format(utils.FormatDate),
  23. Value: dataValue,
  24. })
  25. existMap[v.Format(utils.FormatDate)] = dataValue
  26. }
  27. return
  28. }
  29. // GetChartPredictEdbInfoDataListByRuleTb 根据同比值规则获取预测数据
  30. // 2.1 同比: 在未来某一个时间段内,给定一个固定的同比增速a,用去年同期值X乘以同比增速(1+a),得到预测值Y=X(1+a)
  31. // 例: 今年1-3月值,100,100,120。给定同比增速a=0.1,则明年1-3月预测值为: 100*1.1=110,100*1.1=110,120*1.1=132。
  32. func GetChartPredictEdbInfoDataListByRuleTb(edbInfoId int, tbValue float64, dayList []time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  33. allDataList := make([]*EdbInfoSearchData, 0)
  34. allDataList = append(allDataList, realPredictEdbInfoData...)
  35. allDataList = append(allDataList, predictEdbInfoData...)
  36. newPredictEdbInfoData = predictEdbInfoData
  37. index := len(allDataList)
  38. //获取后面的预测数据
  39. predictEdbInfoData = make([]*EdbInfoSearchData, 0)
  40. for k, currentDate := range dayList {
  41. tmpData := &EdbInfoSearchData{
  42. EdbDataId: edbInfoId + 10000000000 + index + k,
  43. DataTime: currentDate.Format(utils.FormatDate),
  44. //Value: dataValue,
  45. }
  46. var val float64
  47. var calculateStatus bool //计算结果
  48. //currentItem := existMap[av]
  49. //上一年的日期
  50. preDate := currentDate.AddDate(-1, 0, 0)
  51. preDateStr := preDate.Format(utils.FormatDate)
  52. if preValue, ok := existMap[preDateStr]; ok { //上一年同期找到
  53. val = PredictTbzDiv(preValue, tbValue)
  54. calculateStatus = true
  55. } else {
  56. switch frequency {
  57. case "月度":
  58. //向上和向下,各找一个月
  59. nextDateDay := preDate
  60. preDateDay := preDate
  61. for i := 0; i <= 35; i++ {
  62. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  63. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  64. val = PredictTbzDiv(preValue, tbValue)
  65. calculateStatus = true
  66. break
  67. } else {
  68. preDateDayStr := preDateDay.Format(utils.FormatDate)
  69. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  70. val = PredictTbzDiv(preValue, tbValue)
  71. calculateStatus = true
  72. break
  73. }
  74. }
  75. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  76. preDateDay = preDateDay.AddDate(0, 0, -1)
  77. }
  78. case "季度", "年度":
  79. if preValue, ok := existMap[preDateStr]; ok { //上一年同期->下一个月找到
  80. val = PredictTbzDiv(preValue, tbValue)
  81. calculateStatus = true
  82. break
  83. }
  84. default:
  85. nextDateDay := preDate
  86. preDateDay := preDate
  87. for i := 0; i < 35; i++ {
  88. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  89. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  90. val = PredictTbzDiv(preValue, tbValue)
  91. calculateStatus = true
  92. break
  93. } else {
  94. preDateDayStr := preDateDay.Format(utils.FormatDate)
  95. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  96. val = PredictTbzDiv(preValue, tbValue)
  97. calculateStatus = true
  98. break
  99. } else {
  100. //fmt.Println("pre not find:", preDateStr, "i:", i)
  101. }
  102. }
  103. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  104. preDateDay = preDateDay.AddDate(0, 0, -1)
  105. }
  106. }
  107. }
  108. if calculateStatus {
  109. tmpData.Value = val
  110. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  111. allDataList = append(allDataList, tmpData)
  112. existMap[tmpData.DataTime] = val
  113. // 最大最小值
  114. if val < minValue {
  115. minValue = val
  116. }
  117. if val > maxValue {
  118. maxValue = val
  119. }
  120. }
  121. }
  122. return
  123. }
  124. // PredictTbzDiv 同比值计算
  125. // @params a float64 去年同期值
  126. // @params b float64 固定同比增速
  127. func PredictTbzDiv(a, b float64) (result float64) {
  128. // 去年同期值
  129. af := decimal.NewFromFloat(a)
  130. // 同比增速
  131. bf := decimal.NewFromFloat(b)
  132. // 默认1
  133. cf := decimal.NewFromFloat(1)
  134. // 总增速
  135. val := bf.Add(cf)
  136. // 计算
  137. result, _ = val.Mul(af).Round(utils.DataDigits).Float64()
  138. return
  139. }
  140. // GetChartPredictEdbInfoDataListByRuleTc 根据同差值规则获取预测数据
  141. // 2.2 同差: 在未来某一个时间段内,给定一个固定的同比增加值a,用去年同期值X加上同比增加值A,得到预测值Y=X+a
  142. // 例: 今年1-3月值,100,100,120。给定同比增加值a=10,则明年1-3月预测值为: 100+10=110,100+10=110,120+10=130
  143. func GetChartPredictEdbInfoDataListByRuleTc(edbInfoId int, tcValue float64, dayList []time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  144. allDataList := make([]*EdbInfoSearchData, 0)
  145. allDataList = append(allDataList, realPredictEdbInfoData...)
  146. allDataList = append(allDataList, predictEdbInfoData...)
  147. newPredictEdbInfoData = predictEdbInfoData
  148. index := len(allDataList)
  149. //获取后面的预测数据
  150. predictEdbInfoData = make([]*EdbInfoSearchData, 0)
  151. for k, currentDate := range dayList {
  152. tmpData := &EdbInfoSearchData{
  153. EdbDataId: edbInfoId + 10000000000 + index + k,
  154. DataTime: currentDate.Format(utils.FormatDate),
  155. //Value: dataValue,
  156. }
  157. var val float64
  158. var calculateStatus bool //计算结果
  159. //currentItem := existMap[av]
  160. //上一年的日期
  161. preDate := currentDate.AddDate(-1, 0, 0)
  162. preDateStr := preDate.Format(utils.FormatDate)
  163. if preValue, ok := existMap[preDateStr]; ok { //上一年同期找到
  164. val = PredictTczDiv(preValue, tcValue)
  165. calculateStatus = true
  166. } else {
  167. switch frequency {
  168. case "月度":
  169. //向上和向下,各找一个月
  170. nextDateDay := preDate
  171. preDateDay := preDate
  172. for i := 0; i <= 35; i++ {
  173. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  174. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  175. val = PredictTczDiv(preValue, tcValue)
  176. calculateStatus = true
  177. break
  178. } else {
  179. preDateDayStr := preDateDay.Format(utils.FormatDate)
  180. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  181. val = PredictTczDiv(preValue, tcValue)
  182. calculateStatus = true
  183. break
  184. }
  185. }
  186. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  187. preDateDay = preDateDay.AddDate(0, 0, -1)
  188. }
  189. case "季度", "年度":
  190. if preValue, ok := existMap[preDateStr]; ok { //上一年同期->下一个月找到
  191. val = PredictTczDiv(preValue, tcValue)
  192. calculateStatus = true
  193. break
  194. }
  195. default:
  196. nextDateDay := preDate
  197. preDateDay := preDate
  198. for i := 0; i < 35; i++ {
  199. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  200. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  201. val = PredictTczDiv(preValue, tcValue)
  202. calculateStatus = true
  203. break
  204. } else {
  205. preDateDayStr := preDateDay.Format(utils.FormatDate)
  206. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  207. val = PredictTczDiv(preValue, tcValue)
  208. calculateStatus = true
  209. break
  210. } else {
  211. //fmt.Println("pre not find:", preDateStr, "i:", i)
  212. }
  213. }
  214. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  215. preDateDay = preDateDay.AddDate(0, 0, -1)
  216. }
  217. }
  218. }
  219. if calculateStatus {
  220. tmpData.Value = val
  221. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  222. allDataList = append(allDataList, tmpData)
  223. existMap[tmpData.DataTime] = val
  224. // 最大最小值
  225. if val < minValue {
  226. minValue = val
  227. }
  228. if val > maxValue {
  229. maxValue = val
  230. }
  231. }
  232. }
  233. return
  234. }
  235. // PredictTczDiv 环差值计算
  236. // @params a float64 上一期值
  237. // @params b float64 固定的环比增加值
  238. func PredictTczDiv(a, b float64) (result float64) {
  239. if b != 0 {
  240. // 上一期值
  241. af := decimal.NewFromFloat(a)
  242. // 固定的环比增加值
  243. bf := decimal.NewFromFloat(b)
  244. // 计算
  245. result, _ = af.Add(bf).Round(utils.DataDigits).Float64()
  246. } else {
  247. result = 0
  248. }
  249. return
  250. }
  251. // GetChartPredictEdbInfoDataListByRuleHb 根据环比值规则获取预测数据
  252. // 环比:在未来某一个时间段内,给定一个固定的环比增速a,用上一期值X乘以环比增速(1+a),得到预测值Y=X(1+a)
  253. // 例: 最近1期值为100,给定环比增速a=0.2,则未来3期预测值为: 100*1.2=120,120*1.2=144,144*1.2=172.8
  254. func GetChartPredictEdbInfoDataListByRuleHb(edbInfoId int, hbValue float64, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  255. allDataList := make([]*EdbInfoSearchData, 0)
  256. allDataList = append(allDataList, realPredictEdbInfoData...)
  257. allDataList = append(allDataList, predictEdbInfoData...)
  258. newPredictEdbInfoData = predictEdbInfoData
  259. index := len(allDataList)
  260. //获取后面的预测数据
  261. for k, currentDate := range dayList {
  262. tmpK := index + k - 1 //上1期的值
  263. // 环比值计算
  264. val := PredictHbzDiv(allDataList[tmpK].Value, hbValue)
  265. currentDateStr := currentDate.Format(utils.FormatDate)
  266. tmpData := &EdbInfoSearchData{
  267. EdbDataId: edbInfoId + 10000000000 + index + k,
  268. DataTime: currentDateStr,
  269. Value: val,
  270. }
  271. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  272. allDataList = append(allDataList, tmpData)
  273. existMap[currentDateStr] = val
  274. // 最大最小值
  275. if val < minValue {
  276. minValue = val
  277. }
  278. if val > maxValue {
  279. maxValue = val
  280. }
  281. }
  282. return
  283. }
  284. // PredictHbzDiv 环比值计算
  285. // @params a float64 上一期值
  286. // @params b float64 固定的环比增速
  287. func PredictHbzDiv(a, b float64) (result float64) {
  288. if b != 0 {
  289. // 上一期值
  290. af := decimal.NewFromFloat(a)
  291. // 固定的环比增速
  292. bf := decimal.NewFromFloat(b)
  293. // 默认1
  294. cf := decimal.NewFromFloat(1)
  295. // 总增速
  296. val := bf.Add(cf)
  297. // 计算
  298. result, _ = val.Mul(af).Round(utils.DataDigits).Float64()
  299. } else {
  300. result = 0
  301. }
  302. return
  303. }
  304. // GetChartPredictEdbInfoDataListByRuleHc 根据环差值规则获取预测数据
  305. // 2.4 环差:在未来某一个时间段内,给定一个固定的环比增加值a,用上一期值X加上环比增加值a,得到预测值Y=X+a
  306. // 例: 最近1期值为100,给定环比增加值a=10,则未来3期预测值为: 100+10=110,110+10=120,120+10=130
  307. func GetChartPredictEdbInfoDataListByRuleHc(edbInfoId int, hcValue float64, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  308. allDataList := make([]*EdbInfoSearchData, 0)
  309. allDataList = append(allDataList, realPredictEdbInfoData...)
  310. allDataList = append(allDataList, predictEdbInfoData...)
  311. newPredictEdbInfoData = predictEdbInfoData
  312. index := len(allDataList)
  313. //获取后面的预测数据
  314. for k, currentDate := range dayList {
  315. tmpK := index + k - 1 //上1期的值
  316. // 环差别值计算
  317. val := PredictHczDiv(allDataList[tmpK].Value, hcValue)
  318. currentDateStr := currentDate.Format(utils.FormatDate)
  319. tmpData := &EdbInfoSearchData{
  320. EdbDataId: edbInfoId + 10000000000 + index + k,
  321. DataTime: currentDateStr,
  322. Value: val,
  323. }
  324. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  325. allDataList = append(allDataList, tmpData)
  326. existMap[currentDateStr] = val
  327. // 最大最小值
  328. if val < minValue {
  329. minValue = val
  330. }
  331. if val > maxValue {
  332. maxValue = val
  333. }
  334. }
  335. return
  336. }
  337. // PredictHczDiv 环差值计算
  338. // @params a float64 上一期值
  339. // @params b float64 固定的环比增加值
  340. func PredictHczDiv(a, b float64) (result float64) {
  341. if b != 0 {
  342. // 上一期值
  343. af := decimal.NewFromFloat(a)
  344. // 固定的环比增加值
  345. bf := decimal.NewFromFloat(b)
  346. // 计算
  347. result, _ = af.Add(bf).Round(utils.DataDigits).Float64()
  348. } else {
  349. result = 0
  350. }
  351. return
  352. }
  353. // GetChartPredictEdbInfoDataListByRuleNMoveMeanValue 根据N期移动均值规则获取预测数据
  354. // 2.5 N期移动均值:在未来某一个时间段内,下一期值等于过去N期值得平均值。
  355. // 例:最近3期值(N=3),为95,98,105则未来第1期值为 1/3*(95+98+105)=99.33, 未来第2期值为 1/3*(98+105+99.33)=100.78依次类推。
  356. func GetChartPredictEdbInfoDataListByRuleNMoveMeanValue(edbInfoId int, nValue int, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  357. allDataList := make([]*EdbInfoSearchData, 0)
  358. allDataList = append(allDataList, realPredictEdbInfoData...)
  359. allDataList = append(allDataList, predictEdbInfoData...)
  360. newPredictEdbInfoData = predictEdbInfoData
  361. lenAllData := len(allDataList)
  362. if lenAllData < nValue || lenAllData <= 0 {
  363. return
  364. }
  365. if nValue <= 0 {
  366. return
  367. }
  368. // 分母
  369. decimalN := decimal.NewFromInt(int64(nValue))
  370. //获取后面的预测数据
  371. for k, currentDate := range dayList {
  372. tmpIndex := lenAllData + k - 1 //上1期的值
  373. // 数据集合中的最后一个数据
  374. tmpDecimalVal := decimal.NewFromFloat(allDataList[tmpIndex].Value)
  375. for tmpK := 2; tmpK <= nValue; tmpK++ {
  376. tmpIndex2 := tmpIndex - tmpK //上N期的值
  377. tmpDecimalVal2 := decimal.NewFromFloat(allDataList[tmpIndex2].Value)
  378. tmpDecimalVal = tmpDecimalVal.Add(tmpDecimalVal2)
  379. }
  380. // N期移动均值计算
  381. val, _ := tmpDecimalVal.Div(decimalN).Round(utils.DataDigits).Float64()
  382. currentDateStr := currentDate.Format(utils.FormatDate)
  383. tmpData := &EdbInfoSearchData{
  384. EdbDataId: edbInfoId + 10000000000 + lenAllData + k,
  385. DataTime: currentDateStr,
  386. Value: val,
  387. }
  388. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  389. allDataList = append(allDataList, tmpData)
  390. existMap[currentDateStr] = val
  391. // 最大最小值
  392. if val < minValue {
  393. minValue = val
  394. }
  395. if val > maxValue {
  396. maxValue = val
  397. }
  398. }
  399. return
  400. }
  401. // GetChartPredictEdbInfoDataListByRuleNLinearRegression 根据N期移动均值规则获取预测数据
  402. // 2.6N期段线性外推值:给出过去N期值所确定的线性回归方程(Y=aX+b)在未来一段时间内的推算值。回归方程虽然比较复杂,但各种编程语言应该都有现成的模块或函数,应该无需自己编写。
  403. // 例1:过去5期值(N=5)分别为:3,5,7,9,11(每两期值之间的时间间隔相等)。那么按照线性回归方程推算,未来三期的预测值是:13,15,17。
  404. //
  405. // 例2:过去6期值(N=6)分别为:3,3,5,7,9,11(每两期值之间的时间间隔相等)。那么按照线性回归方程推算,未来三期的预测值是:12.33,14.05,15.76。例1和例2的区别在于,多加了一期数据,导致回归方程发生改变,从而预测值不同。
  406. func GetChartPredictEdbInfoDataListByRuleNLinearRegression(edbInfoId int, nValue int, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
  407. //var errMsg string
  408. //defer func() {
  409. // if errMsg != `` {
  410. // go alarm_msg.SendAlarmMsg("更新上海的token失败;ERR:"+err.Error(), 3)
  411. // }
  412. //}()
  413. allDataList := make([]*EdbInfoSearchData, 0)
  414. allDataList = append(allDataList, realPredictEdbInfoData...)
  415. allDataList = append(allDataList, predictEdbInfoData...)
  416. newPredictEdbInfoData = predictEdbInfoData
  417. lenAllData := len(allDataList)
  418. if lenAllData < nValue || lenAllData <= 0 {
  419. return
  420. }
  421. if nValue <= 1 {
  422. return
  423. }
  424. //获取后面的预测数据
  425. // 获取线性方程公式的a、b的值
  426. coordinateData := make([]utils.Coordinate, 0)
  427. for tmpK := nValue; tmpK > 0; tmpK-- {
  428. tmpIndex2 := lenAllData - tmpK //上N期的值
  429. tmpCoordinate := utils.Coordinate{
  430. X: float64(nValue - tmpK + 1),
  431. Y: allDataList[tmpIndex2].Value,
  432. }
  433. coordinateData = append(coordinateData, tmpCoordinate)
  434. }
  435. a, b := utils.GetLinearResult(coordinateData)
  436. if math.IsNaN(a) || math.IsNaN(b) {
  437. err = errors.New("线性方程公式生成失败")
  438. return
  439. }
  440. //fmt.Println("a:", a, ";======b:", b)
  441. aDecimal := decimal.NewFromFloat(a)
  442. bDecimal := decimal.NewFromFloat(b)
  443. for k, currentDate := range dayList {
  444. tmpK := nValue + k + 1
  445. xDecimal := decimal.NewFromInt(int64(tmpK))
  446. val, _ := aDecimal.Mul(xDecimal).Add(bDecimal).Round(utils.DataDigits).Float64()
  447. currentDateStr := currentDate.Format(utils.FormatDate)
  448. tmpData := &EdbInfoSearchData{
  449. EdbDataId: edbInfoId + 10000000000 + lenAllData + k,
  450. DataTime: currentDateStr,
  451. Value: val,
  452. }
  453. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  454. allDataList = append(allDataList, tmpData)
  455. existMap[currentDateStr] = val
  456. // 最大最小值
  457. if val < minValue {
  458. minValue = val
  459. }
  460. if val > maxValue {
  461. maxValue = val
  462. }
  463. }
  464. return
  465. }
  466. // GetChartPredictEdbInfoDataListByRuleTrendsHC 根据动态环比增加值的计算规则获取预测数据
  467. //
  468. // 研究员有对预测指标进行动态环差计算的需求,即预测指标使用环差规则进行预测时,环比增加值不是固定值,而是由几个预测指标计算得出的动态变化的值;
  469. // 需求说明:
  470. // 1、增加“动态环差”预测规则;
  471. // 2、环比增加值在弹窗设置;
  472. // 3、动态环差预测举例:
  473. // 指标A实际最新数据为2022-10-27(100);
  474. // 预测指标B预测数据为2022-10-28(240)、2022-10-29(300);
  475. // 预测指标C预测数据为2022-10-28(260)、2022-10-29(310);
  476. // 计算公式为B-C;
  477. // 则指标A至2022-10-29的预测值为2022-10-28(100+(240-260)=80)、2022-10-29(80+(300-310)=90);
  478. // 注:动态环比增加值的计算遵从计算指标的计算规则,即用于计算的指标若有部分指标缺少部分日期数据,则这部分日期数据不做计算,为空;若动态环比增加值某一天为空,则往前追溯最近一期有值的环比增加值作为该天的数值参与计算;
  479. func GetChartPredictEdbInfoDataListByRuleTrendsHC(edbInfoId int, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, hcDataMap, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  480. allDataList := make([]*EdbInfoSearchData, 0)
  481. allDataList = append(allDataList, realPredictEdbInfoData...)
  482. allDataList = append(allDataList, predictEdbInfoData...)
  483. newPredictEdbInfoData = predictEdbInfoData
  484. lenAllData := len(allDataList)
  485. if lenAllData <= 0 {
  486. return
  487. }
  488. for k, currentDate := range dayList {
  489. // 最近一条数据
  490. tmpLenAllDataList := len(allDataList)
  491. lastValue := allDataList[tmpLenAllDataList-1].Value
  492. // 动态环差值数据
  493. currentDateStr := currentDate.Format(utils.FormatDate)
  494. hcVal, ok := hcDataMap[currentDateStr]
  495. if !ok {
  496. continue
  497. }
  498. lastValueDecimal := decimal.NewFromFloat(lastValue)
  499. hcValDecimal := decimal.NewFromFloat(hcVal)
  500. val, _ := lastValueDecimal.Add(hcValDecimal).Round(utils.DataDigits).Float64()
  501. tmpData := &EdbInfoSearchData{
  502. EdbDataId: edbInfoId + 10000000000 + lenAllData + k,
  503. //EdbInfoId: edbInfoId,
  504. DataTime: currentDateStr,
  505. Value: val,
  506. //DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  507. }
  508. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  509. allDataList = append(allDataList, tmpData)
  510. existMap[currentDateStr] = val
  511. // 最大最小值
  512. if val < minValue {
  513. minValue = val
  514. }
  515. if val > maxValue {
  516. maxValue = val
  517. }
  518. }
  519. return
  520. }
  521. // GetChartPredictEdbInfoDataListByRuleFinalValueHc 根据 给定终值后插值 规则获取预测数据
  522. //
  523. // 项目背景:
  524. // 假设螺纹产量在2023年1月1号的预测值是255万吨,从当下到2023年1月1号,螺纹产量将会线性变化,那么每一期的螺纹产量是多少?
  525. // 算法:从当下(2022/10/28)到2023/1/1号,一共65天,从当前值(305.02)到255,差值-50.02,
  526. // 则每日环差为-50.02/65=-0.7695。因为数据点是周度频率,每周环差为,-0.3849*7=-5.3868。
  527. // 从以上计算过程可看出,“给定终值后差值”的算法,是在“环差”算法的基础上,做的一个改动。即这个”环差值”=【(终值-最新值)/终值与最新值得日期差】*数据频率
  528. // 需求说明:
  529. // 1、增加一个预测规则,名为“给定终值后插值”,给定预测截止日期和预测终值,计算最新数据日期至预测截止日期的时间差T,计算最新数据和预测终值的数据差S,数据频率与指标频度有关,日度=1,周度=7,旬度=10,月度=30,季度=90,年度=365,环差值=S/T*频率,预测数值=前一天数值+环差值;
  530. // 2、最新数据值和日期改动后,需重新计算环差值和预测数值;
  531. func GetChartPredictEdbInfoDataListByRuleFinalValueHc(edbInfoId int, finalValue float64, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  532. allDataList := make([]*EdbInfoSearchData, 0)
  533. allDataList = append(allDataList, realPredictEdbInfoData...)
  534. allDataList = append(allDataList, predictEdbInfoData...)
  535. newPredictEdbInfoData = predictEdbInfoData
  536. index := len(allDataList)
  537. //获取后面的预测日期
  538. lenDay := len(dayList)
  539. if lenDay <= 0 {
  540. return
  541. }
  542. var hcValue float64
  543. lastValueDeciamal := decimal.NewFromFloat(allDataList[index-1].Value) // 实际数据的最后一个值
  544. finalValueDeciamal := decimal.NewFromFloat(finalValue) // 给定的终止数据
  545. dayDecimal := decimal.NewFromInt(int64(lenDay)) // 需要作为分母的期数
  546. hcValue, _ = finalValueDeciamal.Sub(lastValueDeciamal).Div(dayDecimal).Float64() // 计算出来的环差值
  547. //获取后面的预测数据
  548. predictEdbInfoData = make([]*EdbInfoSearchData, 0)
  549. lastK := lenDay - 1 // 最后的日期
  550. for k, currentDate := range dayList {
  551. tmpK := index + k - 1 //上1期的值
  552. var val float64
  553. // 环差别值计算
  554. if k == lastK { //如果是最后一天,那么就用最终值,否则就计算
  555. val = finalValue
  556. } else {
  557. val = PredictHczDiv(allDataList[tmpK].Value, hcValue)
  558. }
  559. currentDateStr := currentDate.Format(utils.FormatDate)
  560. tmpData := &EdbInfoSearchData{
  561. EdbDataId: edbInfoId + 10000000000 + index + k,
  562. //EdbInfoId: edbInfoId,
  563. DataTime: currentDateStr,
  564. Value: val,
  565. //DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  566. }
  567. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  568. allDataList = append(allDataList, tmpData)
  569. existMap[currentDateStr] = val
  570. // 最大最小值
  571. if val < minValue {
  572. minValue = val
  573. }
  574. if val > maxValue {
  575. maxValue = val
  576. }
  577. }
  578. return
  579. }
  580. // SeasonConf 季节性规则的配置
  581. type SeasonConf struct {
  582. Calendar string `description:"公历、农历"`
  583. YearType int `description:"选择方式,1:连续N年;2:指定年份"`
  584. NValue int `description:"连续N年"`
  585. YearList []int `description:"指定年份列表"`
  586. }
  587. // GetChartPredictEdbInfoDataListByRuleSeason 根据 季节性 规则获取预测数据
  588. //
  589. // ETA预测规则:季节性
  590. // 已知选定指标A最近更新日期: 2022-12-6 200
  591. // 设置预测截止日期2023-01-06
  592. // 1、选择过去N年,N=3
  593. // 则过去N年为2021、2020、2019
  594. // 指标A日期 实际值 指标A日期
  595. // 2019/12/5 150 2019/12/6
  596. // 2020/12/5 180 2020/12/6
  597. // 2021/12/5 210 2021/12/6
  598. // 2019/12/31 200 2020/1/1
  599. // 2020/12/31 210 2021/1/1
  600. // 2021/12/31 250 2022/1/1
  601. //
  602. // 计算12.7预测值,求过去N年环差均值=[(100-150)+(160-180)+(250-210)]/3=-10
  603. // 则12.7预测值=12.6值+过去N年环差均值=200-10=190
  604. // 以此类推...
  605. //
  606. // 计算2023.1.2预测值,求过去N年环差均值=[(300-200)+(220-210)+(260-250)]/3=40
  607. // 则2023.1.2预测值=2023.1.1值+过去N年环差均值
  608. func GetChartPredictEdbInfoDataListByRuleSeason(edbInfoId int, yearsList []int, calendar string, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
  609. allDataList := make([]*EdbInfoSearchData, 0)
  610. allDataList = append(allDataList, realPredictEdbInfoData...)
  611. allDataList = append(allDataList, predictEdbInfoData...)
  612. newPredictEdbInfoData = predictEdbInfoData
  613. // 插值法数据处理
  614. handleDataMap := make(map[string]float64)
  615. _, err = HandleDataByLinearRegression(allDataList, handleDataMap)
  616. if err != nil {
  617. return
  618. }
  619. // 获取每个年份的日期数据需要平移的天数
  620. moveDayMap := make(map[int]int, 0) // 每个年份的春节公历
  621. {
  622. if calendar == "公历" {
  623. for _, year := range yearsList {
  624. moveDayMap[year] = 0 //公历就不平移了
  625. }
  626. } else {
  627. currentDay := time.Now()
  628. if currentDay.Month() >= 11 { //如果大于等于11月份,那么用的是下一年的春节
  629. currentDay = currentDay.AddDate(1, 0, 0)
  630. }
  631. currentYear := currentDay.Year()
  632. currentYearCjnl := fmt.Sprintf("%d-01-01", currentYear) //当年的春节农历
  633. currentYearCjgl := solarlunar.LunarToSolar(currentYearCjnl, false) //当年的春节公历
  634. currentYearCjglTime, tmpErr := time.ParseInLocation(utils.FormatDate, currentYearCjgl, time.Local)
  635. if tmpErr != nil {
  636. err = errors.New("当前春节公历日期转换失败:" + tmpErr.Error())
  637. return
  638. }
  639. // 指定的年份
  640. for _, year := range yearsList {
  641. tmpYearCjnl := fmt.Sprintf("%d-01-01", year) //指定年的春节农历
  642. tmpYearCjgl := solarlunar.LunarToSolar(tmpYearCjnl, false) //指定年的春节公历
  643. //moveDayList = append(moveDayList, 0) //公历就不平移了
  644. tmpYearCjglTime, tmpErr := time.ParseInLocation(utils.FormatDate, tmpYearCjgl, time.Local)
  645. if tmpErr != nil {
  646. err = errors.New(fmt.Sprintf("%d公历日期转换失败:%s", year, tmpErr.Error()))
  647. return
  648. }
  649. tmpCurrentYearCjglTime := currentYearCjglTime.AddDate(year-currentYear, 0, 0)
  650. moveDay := utils.GetTimeSubDay(tmpYearCjglTime, tmpCurrentYearCjglTime)
  651. moveDayMap[year] = moveDay //公历平移
  652. }
  653. }
  654. }
  655. index := len(allDataList)
  656. //获取后面的预测日期
  657. //获取后面的预测数据
  658. predictEdbInfoData = make([]*EdbInfoSearchData, 0)
  659. for k, currentDate := range dayList {
  660. // 如果遇到闰二月,如2.29,去掉该天数据
  661. if strings.Contains(currentDate.Format(utils.FormatDate), "02-29") {
  662. continue
  663. }
  664. tmpHistoryVal := decimal.NewFromFloat(0) //往期的差值总和
  665. tmpHistoryValNum := 0 // 往期差值计算的数量
  666. tmpLenAllDataList := len(allDataList)
  667. tmpK := tmpLenAllDataList - 1 //上1期数据的下标
  668. lastDayData := allDataList[tmpK] // 上1期的数据
  669. //lastDayStr := lastDayData.DataTime
  670. lastDayVal := lastDayData.Value
  671. //lastDay, tmpErr := time.ParseInLocation(utils.FormatDate, lastDayStr, time.Local)
  672. //if tmpErr != nil {
  673. // err = errors.New("获取上期日期转换失败:" + tmpErr.Error())
  674. //}
  675. //lastDay := currentDate
  676. for _, year := range yearsList {
  677. moveDay := moveDayMap[year] //需要移动的天数
  678. var tmpHistoryCurrentVal, tmpHistoryLastVal float64
  679. var isFindHistoryCurrent, isFindHistoryLast bool //是否找到前几年的数据
  680. //前几年当日的日期
  681. tmpHistoryCurrentDate := currentDate.AddDate(year-currentDate.Year(), 0, -(moveDay + 1))
  682. for i := 0; i <= 35; i++ { // 前后35天找数据,找到最近的值,先向后面找,再往前面找
  683. tmpDate := tmpHistoryCurrentDate.AddDate(0, 0, i)
  684. if val, ok := handleDataMap[tmpDate.Format(utils.FormatDate)]; ok {
  685. tmpHistoryCurrentVal = val
  686. isFindHistoryCurrent = true
  687. break
  688. } else {
  689. tmpDate := tmpHistoryCurrentDate.AddDate(0, 0, -i)
  690. if val, ok := handleDataMap[tmpDate.Format(utils.FormatDate)]; ok {
  691. tmpHistoryCurrentVal = val
  692. isFindHistoryCurrent = true
  693. break
  694. }
  695. }
  696. }
  697. //前几年上一期的日期
  698. tmpHistoryLastDate := tmpHistoryCurrentDate.AddDate(0, 0, -1)
  699. for i := 0; i <= 35; i++ { // 前后35天找数据,找到最近的值,先向后面找,再往前面找
  700. tmpDate := tmpHistoryLastDate.AddDate(0, 0, i)
  701. if val, ok := handleDataMap[tmpDate.Format(utils.FormatDate)]; ok {
  702. tmpHistoryLastVal = val
  703. isFindHistoryLast = true
  704. break
  705. } else {
  706. tmpDate := tmpHistoryLastDate.AddDate(0, 0, -i)
  707. if val, ok := handleDataMap[tmpDate.Format(utils.FormatDate)]; ok {
  708. tmpHistoryLastVal = val
  709. isFindHistoryLast = true
  710. break
  711. }
  712. }
  713. }
  714. // 如果两个日期对应的数据都找到了,那么计算两期的差值
  715. if isFindHistoryCurrent && isFindHistoryLast {
  716. af := decimal.NewFromFloat(tmpHistoryCurrentVal)
  717. bf := decimal.NewFromFloat(tmpHistoryLastVal)
  718. tmpHistoryVal = tmpHistoryVal.Add(af.Sub(bf))
  719. tmpHistoryValNum++
  720. }
  721. }
  722. //计算的差值与选择的年份数量不一致,那么当前日期不计算
  723. if tmpHistoryValNum != len(yearsList) {
  724. continue
  725. }
  726. lastDayValDec := decimal.NewFromFloat(lastDayVal)
  727. val, _ := tmpHistoryVal.Div(decimal.NewFromInt(int64(tmpHistoryValNum))).Add(lastDayValDec).Round(utils.DataDigits).Float64()
  728. currentDateStr := currentDate.Format(utils.FormatDate)
  729. tmpData := &EdbInfoSearchData{
  730. EdbDataId: edbInfoId + 10000000000 + index + k,
  731. //EdbInfoId: edbInfoId,
  732. DataTime: currentDateStr,
  733. Value: val,
  734. //DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  735. }
  736. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  737. allDataList = append(allDataList, tmpData)
  738. existMap[currentDateStr] = val
  739. // 继续使用插值法补充新预测日期的数据之间的值
  740. _, err = HandleDataByLinearRegression([]*EdbInfoSearchData{
  741. lastDayData, tmpData,
  742. }, handleDataMap)
  743. if err != nil {
  744. return
  745. }
  746. // 最大最小值
  747. if val < minValue {
  748. minValue = val
  749. }
  750. if val > maxValue {
  751. maxValue = val
  752. }
  753. }
  754. return
  755. }
  756. // MoveAverageConf 移动平均同比规则的配置
  757. type MoveAverageConf struct {
  758. Year int `description:"指定年份"`
  759. NValue int `description:"N期的数据"`
  760. }
  761. // GetChartPredictEdbInfoDataListByRuleMoveAverageTb 根据 移动平均同比 规则获取预测数据
  762. //
  763. // ETA预测规则:季节性
  764. // 2、选择指定N年,N=3
  765. // 指定N年为2012、2015、2018
  766. // 指标A日期 实际值 指标A日期 实际值
  767. // 2012/12/5 150 2012/12/6 130
  768. // 2015/12/5 180 2015/12/6 150
  769. // 2018/12/5 210 2018/12/6 260
  770. // 2012/12/31 200 2013/1/1 200
  771. // 2015/12/31 210 2016/1/1 250
  772. // 2018/12/31 250 2019/1/1 270
  773. // 计算12.7预测值,求过去N年环差均值=[(130-150)+(150-180)+(290-210)]/3=10
  774. // 则12.7预测值=12.6值+过去N年环差均值=200+10=210
  775. // 以此类推...
  776. // 计算2023.1.2预测值,求过去N年环差均值=[(200-200)+(250-210)+(270-250)]/3=16.67
  777. // 则2023.1.2预测值=2023.1.1值+过去N年环差均值
  778. func GetChartPredictEdbInfoDataListByRuleMoveAverageTb(edbInfoId int, nValue, year int, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
  779. allDataList := make([]*EdbInfoSearchData, 0)
  780. allDataList = append(allDataList, realPredictEdbInfoData...)
  781. allDataList = append(allDataList, predictEdbInfoData...)
  782. newPredictEdbInfoData = predictEdbInfoData
  783. lenAllData := len(allDataList)
  784. if lenAllData < nValue || lenAllData <= 0 {
  785. return
  786. }
  787. if nValue <= 0 {
  788. return
  789. }
  790. // 分母
  791. decimalN := decimal.NewFromInt(int64(nValue))
  792. // 需要减去的年份
  793. subYear := year - dayList[0].Year()
  794. //获取后面的预测数据
  795. for k, currentDate := range dayList {
  796. tmpLenAllDataList := len(allDataList)
  797. tmpIndex := tmpLenAllDataList - 1 //上1期数据的下标
  798. averageDateList := make([]string, 0) //计算平均数的日期
  799. // 数据集合中的最后一个数据
  800. tmpDecimalVal := decimal.NewFromFloat(allDataList[tmpIndex].Value)
  801. averageDateList = append(averageDateList, allDataList[tmpIndex].DataTime)
  802. for tmpK := 1; tmpK < nValue; tmpK++ {
  803. tmpIndex2 := tmpIndex - tmpK //上N期的值
  804. tmpDecimalVal2 := decimal.NewFromFloat(allDataList[tmpIndex2].Value)
  805. tmpDecimalVal = tmpDecimalVal.Add(tmpDecimalVal2)
  806. averageDateList = append(averageDateList, allDataList[tmpIndex2].DataTime)
  807. }
  808. // 最近的N期平均值
  809. tmpAverageVal := tmpDecimalVal.Div(decimalN)
  810. var tmpHistoryCurrentVal float64 // 前几年当日的数据值
  811. var isFindHistoryCurrent, isFindHistoryLast bool //是否找到前几年的数据
  812. tmpHistoryDecimalVal := decimal.NewFromFloat(0) //前几年N期数据总值
  813. {
  814. // 前几年N期汇总期数
  815. tmpHistoryValNum := 0
  816. {
  817. //前几年当日的日期
  818. tmpHistoryCurrentDate := currentDate.AddDate(subYear, 0, 0)
  819. for i := 0; i <= 35; i++ { // 前后35天找数据,找到最近的值,先向后面找,再往前面找
  820. tmpDate := tmpHistoryCurrentDate.AddDate(0, 0, i)
  821. if val, ok := existMap[tmpDate.Format(utils.FormatDate)]; ok {
  822. tmpHistoryCurrentVal = val
  823. isFindHistoryCurrent = true
  824. break
  825. } else {
  826. tmpDate := tmpHistoryCurrentDate.AddDate(0, 0, -i)
  827. if val, ok := existMap[tmpDate.Format(utils.FormatDate)]; ok {
  828. tmpHistoryCurrentVal = val
  829. isFindHistoryCurrent = true
  830. break
  831. }
  832. }
  833. }
  834. }
  835. for _, averageDate := range averageDateList {
  836. lastDay, tmpErr := time.ParseInLocation(utils.FormatDate, averageDate, time.Local)
  837. if tmpErr != nil {
  838. err = tmpErr
  839. return
  840. }
  841. //前几年上一期的日期
  842. tmpHistoryLastDate := lastDay.AddDate(subYear, 0, 0)
  843. for i := 0; i <= 35; i++ { // 前后35天找数据,找到最近的值,先向后面找,再往前面找
  844. tmpDate := tmpHistoryLastDate.AddDate(0, 0, i)
  845. if val, ok := existMap[tmpDate.Format(utils.FormatDate)]; ok {
  846. tmpDecimalVal2 := decimal.NewFromFloat(val)
  847. tmpHistoryDecimalVal = tmpHistoryDecimalVal.Add(tmpDecimalVal2)
  848. tmpHistoryValNum++
  849. break
  850. } else {
  851. tmpDate := tmpHistoryLastDate.AddDate(0, 0, -i)
  852. if val, ok := existMap[tmpDate.Format(utils.FormatDate)]; ok {
  853. tmpDecimalVal2 := decimal.NewFromFloat(val)
  854. tmpHistoryDecimalVal = tmpHistoryDecimalVal.Add(tmpDecimalVal2)
  855. tmpHistoryValNum++
  856. break
  857. }
  858. }
  859. }
  860. }
  861. // 汇总期数与配置的N期数量一致
  862. if tmpHistoryValNum == nValue {
  863. isFindHistoryLast = true
  864. }
  865. }
  866. // 如果没有找到前几年的汇总数据,或者没有找到前几年当日的数据,那么退出当前循环,进入下一循环
  867. if !isFindHistoryLast || !isFindHistoryCurrent {
  868. continue
  869. }
  870. // 计算最近N期平均值
  871. tmpHistoryAverageVal := tmpHistoryDecimalVal.Div(decimalN)
  872. // 计算最近N期同比值
  873. tbVal := tmpAverageVal.Div(tmpHistoryAverageVal)
  874. // 预测值结果 = 同比年份同期值(tmpHistoryCurrentVal的值)* 同比值(tbVal的值)
  875. val, _ := decimal.NewFromFloat(tmpHistoryCurrentVal).Mul(tbVal).Round(utils.DataDigits).Float64()
  876. currentDateStr := currentDate.Format(utils.FormatDate)
  877. tmpData := &EdbInfoSearchData{
  878. EdbDataId: edbInfoId + 10000000000 + lenAllData + k,
  879. //EdbInfoId: edbInfoId,
  880. DataTime: currentDateStr,
  881. Value: val,
  882. //DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  883. }
  884. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  885. allDataList = append(allDataList, tmpData)
  886. existMap[currentDateStr] = val
  887. // 最大最小值
  888. if val < minValue {
  889. minValue = val
  890. }
  891. if val > maxValue {
  892. maxValue = val
  893. }
  894. }
  895. return
  896. }
  897. // GetChartPredictEdbInfoDataListByRuleTbzscz 根据 同比增速差值 规则获取预测数据
  898. // 同比增速差值计算方式:
  899. // 1、首先计算出所选指标实际最新日期值的同比增速:(本期数值-同期数值)÷同期数值*100%
  900. // 2、根据预测截止日期的同比增速终值、最新日期值的同比增速、与最新日期距离截止日期的期数,计算出到截止日期为止的每一期的同比增速。(等差规则计算每一期的同比增速,结合去年同期值,计算出每一期的同比预测值)。公差=(末项-首项)÷(n-1),an=a1+(n-1)d,(n为正整数,n大于等于2)
  901. // 3、根据去年同期值和未来每一期的同比增速值,求出同比预测值,同比预测值=同期值*(1+同比增速)
  902. // 同比增速差值:计算最新数据的同比增速((本期数值-同期数值)÷同期数值*100%),结合同比增速终值与期数,计算每一期同比增速,进而求出同比预测值。
  903. //
  904. // 例:如上图所示指标,(1)最新日期值2022-12-31 141175 ,结合同期值,计算同比增速;
  905. // (2)同比增速终值,若为50%, 预测日期为2023-03-31,则根据(1)中的同比增速值与同比增速终值,计算出中间两期的同比增速;
  906. // (3)求出每一期的预测同比值,预测同比值=同期值*(1+同比增速)
  907. func GetChartPredictEdbInfoDataListByRuleTbzscz(edbInfoId int, tbEndValue float64, dayList []time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  908. allDataList := make([]*EdbInfoSearchData, 0)
  909. allDataList = append(allDataList, realPredictEdbInfoData...)
  910. allDataList = append(allDataList, predictEdbInfoData...)
  911. newPredictEdbInfoData = predictEdbInfoData
  912. index := len(allDataList)
  913. // 获取近期数据的同比值
  914. if index <= 0 {
  915. return
  916. }
  917. lastData := allDataList[index-1]
  918. lastDayTime, _ := time.ParseInLocation(utils.FormatDate, lastData.DataTime, time.Local)
  919. var lastTb decimal.Decimal // 计算最新数据与上一期的数据同比值
  920. {
  921. //上一年的日期
  922. preDate := lastDayTime.AddDate(-1, 0, 0)
  923. preDateStr := preDate.Format(utils.FormatDate)
  924. if preValue, ok := existMap[preDateStr]; ok { //上一年同期找到
  925. lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
  926. } else {
  927. switch frequency {
  928. case "月度":
  929. //向上和向下,各找一个月
  930. nextDateDay := preDate
  931. preDateDay := preDate
  932. for i := 0; i <= 35; i++ {
  933. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  934. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  935. lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
  936. break
  937. } else {
  938. preDateDayStr := preDateDay.Format(utils.FormatDate)
  939. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  940. lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
  941. break
  942. }
  943. }
  944. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  945. preDateDay = preDateDay.AddDate(0, 0, -1)
  946. }
  947. case "季度", "年度":
  948. if preValue, ok := existMap[preDateStr]; ok { //上一年同期->下一个月找到
  949. lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
  950. break
  951. }
  952. default:
  953. nextDateDay := preDate
  954. preDateDay := preDate
  955. for i := 0; i < 35; i++ {
  956. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  957. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  958. lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
  959. break
  960. } else {
  961. preDateDayStr := preDateDay.Format(utils.FormatDate)
  962. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  963. lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
  964. break
  965. } else {
  966. //fmt.Println("pre not find:", preDateStr, "i:", i)
  967. }
  968. }
  969. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  970. preDateDay = preDateDay.AddDate(0, 0, -1)
  971. }
  972. }
  973. }
  974. }
  975. //获取后面的预测数据
  976. lenDay := len(dayList)
  977. tbEndValueDecimal := decimal.NewFromFloat(tbEndValue)
  978. avgTbVal := tbEndValueDecimal.Sub(lastTb).Div(decimal.NewFromInt(int64(lenDay)))
  979. predictEdbInfoData = make([]*EdbInfoSearchData, 0)
  980. for k, currentDate := range dayList {
  981. var tbValue decimal.Decimal
  982. if k == lenDay-1 { // 如果是最后的日期了,那么就用终值去计算
  983. tbValue = tbEndValueDecimal.Add(decimal.NewFromInt(1))
  984. } else { // 最近数据的同比值 + (平均增值乘以当前期数)
  985. tbValue = lastTb.Add(avgTbVal.Mul(decimal.NewFromInt(int64(k + 1)))).Add(decimal.NewFromInt(1))
  986. }
  987. tmpData := &EdbInfoSearchData{
  988. EdbDataId: edbInfoId + 100000 + index + k,
  989. //EdbInfoId: edbInfoId,
  990. DataTime: currentDate.Format(utils.FormatDate),
  991. //Value: dataValue,
  992. //DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  993. }
  994. var val float64
  995. var calculateStatus bool //计算结果
  996. //currentItem := existMap[av]
  997. //上一年的日期
  998. preDate := currentDate.AddDate(-1, 0, 0)
  999. preDateStr := preDate.Format(utils.FormatDate)
  1000. if preValue, ok := existMap[preDateStr]; ok { //上一年同期找到
  1001. val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).Round(utils.DataDigits).Float64()
  1002. calculateStatus = true
  1003. } else {
  1004. switch frequency {
  1005. case "月度":
  1006. //向上和向下,各找一个月
  1007. nextDateDay := preDate
  1008. preDateDay := preDate
  1009. for i := 0; i <= 35; i++ {
  1010. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  1011. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  1012. val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).Round(utils.DataDigits).Float64()
  1013. calculateStatus = true
  1014. break
  1015. } else {
  1016. preDateDayStr := preDateDay.Format(utils.FormatDate)
  1017. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  1018. val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).Round(utils.DataDigits).Float64()
  1019. calculateStatus = true
  1020. break
  1021. }
  1022. }
  1023. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  1024. preDateDay = preDateDay.AddDate(0, 0, -1)
  1025. }
  1026. case "季度", "年度":
  1027. if preValue, ok := existMap[preDateStr]; ok { //上一年同期->下一个月找到
  1028. val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).Round(utils.DataDigits).Float64()
  1029. calculateStatus = true
  1030. break
  1031. }
  1032. default:
  1033. nextDateDay := preDate
  1034. preDateDay := preDate
  1035. for i := 0; i < 35; i++ {
  1036. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  1037. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  1038. val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).Round(utils.DataDigits).Float64()
  1039. calculateStatus = true
  1040. break
  1041. } else {
  1042. preDateDayStr := preDateDay.Format(utils.FormatDate)
  1043. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  1044. val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).Round(utils.DataDigits).Float64()
  1045. calculateStatus = true
  1046. break
  1047. } else {
  1048. //fmt.Println("pre not find:", preDateStr, "i:", i)
  1049. }
  1050. }
  1051. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  1052. preDateDay = preDateDay.AddDate(0, 0, -1)
  1053. }
  1054. }
  1055. }
  1056. if calculateStatus {
  1057. tmpData.Value = val
  1058. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  1059. allDataList = append(allDataList, tmpData)
  1060. existMap[tmpData.DataTime] = val
  1061. // 最大最小值
  1062. if val < minValue {
  1063. minValue = val
  1064. }
  1065. if val > maxValue {
  1066. maxValue = val
  1067. }
  1068. }
  1069. }
  1070. return
  1071. }
  1072. // RuleLineNhConf 一元线性拟合规则的配置
  1073. type RuleLineNhConf struct {
  1074. StartDate string `description:"开始日期"`
  1075. EndDate string `description:"结束日期"`
  1076. MoveDay int `description:"移动天数"`
  1077. EdbInfoId int `description:"指标id"`
  1078. DateType int `description:"时间类型:0:开始日期至截止日期,1开始日期-至今"`
  1079. }
  1080. // GetChartPredictEdbInfoDataListByRuleLineNh 根据 一元线性拟合 的计算规则获取预测数据
  1081. //
  1082. // 选择被预测的指标B(作为自变量,非预测指标),选择指标A(作为因变量,可以是基础指标和预测指标)
  1083. // 2、选择拟合时间段,起始日期至今或指定时间段,选择至今,在计算时截止到指标B的最新日期
  1084. // 3、设定A领先B时间(天),正整数、负整数、0
  1085. // 4、调用拟合残差的数据预处理和算法,给出拟合方程Y=aX+b的系数a,b
  1086. // 5、指标A代入拟合方程得到拟合预测指标B',拟合预测指标使用指标B的频度,在指标B的实际值后面连接拟合预测指标B'对应日期的预测值
  1087. //
  1088. // 注:选择预测截止日期,若所选日期 ≤ 指标A设置领先后的日期序列,则预测指标日期最新日期有值(在指标B'的有值范围内);若所选日期 > 指标A设置领先后的日期序列,则预测指标只到指标A领先后的日期序列(超出指标B'的有值范围,最多到指标B'的最新值);指标A、B更新后,更新预测指标
  1089. func GetChartPredictEdbInfoDataListByRuleLineNh(edbInfoId int, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, newNhccDataMap, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
  1090. allDataList := make([]*EdbInfoSearchData, 0)
  1091. allDataList = append(allDataList, realPredictEdbInfoData...)
  1092. allDataList = append(allDataList, predictEdbInfoData...)
  1093. newPredictEdbInfoData = predictEdbInfoData
  1094. lenAllData := len(allDataList)
  1095. if lenAllData <= 0 {
  1096. return
  1097. }
  1098. for k, currentDate := range dayList {
  1099. // 动态拟合残差值数据
  1100. currentDateStr := currentDate.Format(utils.FormatDate)
  1101. val, ok := newNhccDataMap[currentDateStr]
  1102. if !ok {
  1103. continue
  1104. }
  1105. tmpData := &EdbInfoSearchData{
  1106. EdbDataId: edbInfoId + 100000 + lenAllData + k,
  1107. //EdbInfoId: edbInfoId,
  1108. DataTime: currentDateStr,
  1109. Value: val,
  1110. //DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  1111. }
  1112. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  1113. allDataList = append(allDataList, tmpData)
  1114. existMap[currentDateStr] = val
  1115. // 最大最小值
  1116. if val < minValue {
  1117. minValue = val
  1118. }
  1119. if val > maxValue {
  1120. maxValue = val
  1121. }
  1122. }
  1123. return
  1124. }
  1125. // getCalculateNhccData 获取计算出来的 拟合残差 数据
  1126. func getCalculateNhccData(secondDataList []*EdbInfoSearchData, ruleConf RuleLineNhConf) (newBDataMap map[string]float64, err error, errMsg string) {
  1127. firstEdbInfoId := ruleConf.EdbInfoId
  1128. moveDay := ruleConf.MoveDay
  1129. startDate, _ := time.ParseInLocation(utils.FormatDate, ruleConf.StartDate, time.Local)
  1130. var endDate time.Time
  1131. if ruleConf.DateType == 0 {
  1132. endDate, _ = time.ParseInLocation(utils.FormatDate, ruleConf.EndDate, time.Local)
  1133. } else {
  1134. endDate, _ = time.ParseInLocation(utils.FormatDate, time.Now().Format(utils.FormatDate), time.Local)
  1135. }
  1136. //查询当前指标现有的数据
  1137. edbInfo, err := GetEdbInfoById(firstEdbInfoId)
  1138. if err != nil {
  1139. return
  1140. }
  1141. //第一个指标
  1142. aDataList := make([]EdbInfoSearchData, 0)
  1143. aDataMap := make(map[string]float64)
  1144. {
  1145. //第一个指标的数据列表
  1146. var firstDataList []*EdbInfoSearchData
  1147. switch edbInfo.EdbInfoType {
  1148. case 0:
  1149. //获取来源指标的数据
  1150. firstDataList, err = GetEdbDataListAll(edbInfo.Source, edbInfo.SubSource, FindEdbDataListAllCond{
  1151. EdbInfoId: edbInfo.EdbInfoId,
  1152. }, 1)
  1153. case 1:
  1154. firstDataList, err = GetPredictEdbDataListAllByStartDate(edbInfo, 1, "")
  1155. default:
  1156. err = errors.New(fmt.Sprint("获取失败,指标类型异常", edbInfo.EdbInfoType))
  1157. }
  1158. if err != nil {
  1159. return
  1160. }
  1161. aDataList, aDataMap = handleNhccData(firstDataList, moveDay)
  1162. }
  1163. //第二个指标
  1164. bDataList := make([]EdbInfoSearchData, 0)
  1165. bDataMap := make(map[string]float64)
  1166. {
  1167. bDataList, bDataMap = handleNhccData(secondDataList, 0)
  1168. }
  1169. if len(aDataList) <= 0 {
  1170. errMsg = `自变量没有数据`
  1171. err = errors.New(errMsg)
  1172. return
  1173. }
  1174. if len(bDataList) <= 0 {
  1175. errMsg = `因变量没有数据`
  1176. err = errors.New(errMsg)
  1177. return
  1178. }
  1179. // 拟合残差计算的结束日期判断
  1180. {
  1181. endAData := aDataList[len(aDataList)-1]
  1182. tmpEndDate, tmpErr := time.ParseInLocation(utils.FormatDate, endAData.DataTime, time.Local)
  1183. if tmpErr != nil {
  1184. err = tmpErr
  1185. return
  1186. }
  1187. // 如果A指标的最新数据日期早于拟合残差的结束日期,那么就用A指标的最新数据日期
  1188. if tmpEndDate.Before(endDate) {
  1189. endDate = tmpEndDate
  1190. }
  1191. endBData := bDataList[len(bDataList)-1]
  1192. tmpEndDate, tmpErr = time.ParseInLocation(utils.FormatDate, endBData.DataTime, time.Local)
  1193. if tmpErr != nil {
  1194. err = tmpErr
  1195. return
  1196. }
  1197. // 如果B指标的最新数据日期早于拟合残差的结束日期,那么就用A指标的最新数据日期
  1198. if tmpEndDate.Before(endDate) {
  1199. endDate = tmpEndDate
  1200. }
  1201. }
  1202. // 计算线性方程公式
  1203. var a, b float64
  1204. {
  1205. coordinateData := make([]utils.Coordinate, 0)
  1206. for i := startDate; i.Before(endDate) || i.Equal(endDate); i = i.AddDate(0, 0, 1) {
  1207. dateStr := i.Format(utils.FormatDate)
  1208. xValue, ok := aDataMap[dateStr]
  1209. if !ok {
  1210. errMsg = "自变量日期:" + dateStr + "数据异常,导致计算线性方程公式失败"
  1211. err = errors.New(errMsg)
  1212. return
  1213. }
  1214. yValue, ok := bDataMap[dateStr]
  1215. if !ok {
  1216. errMsg = "因变量日期:" + dateStr + "数据异常,导致计算线性方程公式失败"
  1217. err = errors.New(errMsg)
  1218. return
  1219. }
  1220. tmpCoordinate := utils.Coordinate{
  1221. X: xValue,
  1222. Y: yValue,
  1223. }
  1224. coordinateData = append(coordinateData, tmpCoordinate)
  1225. }
  1226. a, b = utils.GetLinearResult(coordinateData)
  1227. }
  1228. if math.IsNaN(a) || math.IsNaN(b) {
  1229. errMsg = "线性方程公式生成失败"
  1230. err = errors.New(errMsg)
  1231. return
  1232. }
  1233. //fmt.Println("a:", a, ";======b:", b)
  1234. //计算B’
  1235. newBDataMap = make(map[string]float64)
  1236. {
  1237. //B’=aA+b
  1238. aDecimal := decimal.NewFromFloat(a)
  1239. bDecimal := decimal.NewFromFloat(b)
  1240. for _, aData := range aDataList {
  1241. xDecimal := decimal.NewFromFloat(aData.Value)
  1242. val, _ := aDecimal.Mul(xDecimal).Add(bDecimal).Round(utils.DataDigits).Float64()
  1243. newBDataMap[aData.DataTime] = val
  1244. }
  1245. }
  1246. return
  1247. }
  1248. // GetChartPredictEdbInfoDataListByRuleNAnnualAverage 根据 N年均值 规则获取预测数据
  1249. // ETA预测规则:N年均值:过去N年同期均值。过去N年可以连续或者不连续,指标数据均用线性插值补全为日度数据后计算;
  1250. func GetChartPredictEdbInfoDataListByRuleNAnnualAverage(edbInfoId int, configValue string, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
  1251. // 获取配置的年份列表
  1252. yearList, _, err := getYearListBySeasonConf(configValue)
  1253. if err != nil {
  1254. return
  1255. }
  1256. allDataList := make([]*EdbInfoSearchData, 0)
  1257. allDataList = append(allDataList, realPredictEdbInfoData...)
  1258. allDataList = append(allDataList, predictEdbInfoData...)
  1259. newPredictEdbInfoData = predictEdbInfoData
  1260. // 插值法数据处理
  1261. handleDataMap := make(map[string]float64)
  1262. _, err = HandleDataByLinearRegression(allDataList, handleDataMap)
  1263. if err != nil {
  1264. return
  1265. }
  1266. index := len(allDataList)
  1267. //获取后面的预测数据
  1268. predictEdbInfoData = make([]*EdbInfoSearchData, 0)
  1269. for k, currentDate := range dayList {
  1270. // 如果遇到闰二月,如2.29,去掉该天数据
  1271. if strings.Contains(currentDate.Format(utils.FormatDate), "02-29") {
  1272. continue
  1273. }
  1274. tmpK := len(allDataList) - 1 //上1期数据的下标
  1275. lastDayData := allDataList[tmpK] // 上1期的数据
  1276. tmpHistoryVal := decimal.NewFromFloat(0) //往期的差值总和
  1277. tmpHistoryValNum := 0 // 往期差值计算的数量
  1278. for _, year := range yearList {
  1279. //前几年当日的日期
  1280. tmpHistoryCurrentDate := currentDate.AddDate(year-currentDate.Year(), 0, 0)
  1281. if val, ok := handleDataMap[tmpHistoryCurrentDate.Format(utils.FormatDate)]; ok {
  1282. tmpHistoryVal = tmpHistoryVal.Add(decimal.NewFromFloat(val))
  1283. tmpHistoryValNum++
  1284. }
  1285. }
  1286. //计算的差值与选择的年份数量不一致,那么当前日期不计算
  1287. if tmpHistoryValNum != len(yearList) {
  1288. continue
  1289. }
  1290. val, _ := tmpHistoryVal.Div(decimal.NewFromInt(int64(tmpHistoryValNum))).Round(utils.DataDigits).Float64()
  1291. currentDateStr := currentDate.Format(utils.FormatDate)
  1292. tmpData := &EdbInfoSearchData{
  1293. EdbDataId: edbInfoId + 100000 + index + k,
  1294. //EdbInfoId: edbInfoId,
  1295. DataTime: currentDateStr,
  1296. Value: val,
  1297. //DataTimestamp: currentDate.UnixNano() / 1e6,
  1298. }
  1299. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  1300. allDataList = append(allDataList, tmpData)
  1301. existMap[currentDateStr] = val
  1302. // 继续使用插值法补充新预测日期的数据之间的值
  1303. _, err = HandleDataByLinearRegression([]*EdbInfoSearchData{
  1304. lastDayData, tmpData,
  1305. }, handleDataMap)
  1306. if err != nil {
  1307. return
  1308. }
  1309. // 最大最小值
  1310. if val < minValue {
  1311. minValue = val
  1312. }
  1313. if val > maxValue {
  1314. maxValue = val
  1315. }
  1316. }
  1317. return
  1318. }
  1319. // AnnualValueInversionConf 年度值倒推规则
  1320. type AnnualValueInversionConf struct {
  1321. Value float64 `description:"年度值"`
  1322. Type int `description:"分配方式,1:均值法;2:同比法"`
  1323. Year int `description:"同比年份"`
  1324. YearList []int `description:"指定年份列表"`
  1325. }
  1326. // GetChartPredictEdbInfoDataListByRuleAnnualValueInversion 根据 年度值倒推 规则获取预测数据
  1327. // 预测指标-年度值倒推
  1328. // 1、年度值倒推,选择同比法,支持选择多个年份(当前只可选择一个年份)。选择多个年份时,计算多个年份的余额平均,和同期平均。
  1329. // 2、年度值倒推,同比法的算法优化:旬度,月度,季度,半年度的算法,同原先算法。
  1330. // 日度、周度值算法更新(假设指标实际值最新日期月2024/3/1):
  1331. // 1、设定年度值
  1332. // 2、计算余额:年度值-年初至今累计值
  1333. // 3、年初至今累计值计算方法:用后置填充变频成连续自然日日度数据。计算1/1至指标最新日期(2024/3/3/1)的累计值。
  1334. // 4、计算同比年份全年累计值,年初至指标最新值同期(2023/3/1)累计值,两者相减得到同比年份同期余额,再取平均值,作为最终的同期余额
  1335. // 5、用今年余额/去年同期余额得到同比增速。
  1336. // 6、每一期预测值,为同比年份的同期值,乘以(1+同比)。去年同期,用变频后的序列对应。
  1337. // 7、如果选择的同比年份是多个。则计算多个年份的平均余额。今年余额/平均余额=同比增速。同比基数为多个年份的同期平均值
  1338. func GetChartPredictEdbInfoDataListByRuleAnnualValueInversion(edbInfoId int, configValue string, dayList []time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
  1339. if frequency == "年度" {
  1340. err = errors.New("当前指标频度是年度,不允许配置年度值倒推")
  1341. return
  1342. }
  1343. // 获取配置
  1344. var annualValueInversionConf AnnualValueInversionConf
  1345. err = json.Unmarshal([]byte(configValue), &annualValueInversionConf)
  1346. if err != nil {
  1347. err = errors.New("年度值倒推配置信息异常:" + err.Error())
  1348. return
  1349. }
  1350. allDataList := make([]*EdbInfoSearchData, 0)
  1351. allDataList = append(allDataList, realPredictEdbInfoData...)
  1352. allDataList = append(allDataList, predictEdbInfoData...)
  1353. newPredictEdbInfoData = predictEdbInfoData
  1354. index := len(allDataList)
  1355. // 没有数据,直接返回
  1356. if index <= 0 {
  1357. return
  1358. }
  1359. // 配置的年度值
  1360. yearValueConfig := annualValueInversionConf.Value
  1361. // 最新数据的日期
  1362. currDayTime, err := time.ParseInLocation(utils.FormatDate, allDataList[index-1].DataTime, time.Local)
  1363. if err != nil {
  1364. return
  1365. }
  1366. // 当前年的日期
  1367. lastDayTime := dayList[len(dayList)-1]
  1368. if currDayTime.Year() != lastDayTime.Year() {
  1369. err = errors.New("年度值倒推不支持跨年预测")
  1370. return
  1371. }
  1372. // 均值法
  1373. if annualValueInversionConf.Type == 1 {
  1374. // 当前年的期数
  1375. currYearN := 0
  1376. // 当前已经消耗的额度
  1377. var currYearVal float64
  1378. // 计算当前年的期数以及已经消耗的额度
  1379. {
  1380. if frequency != "周度" {
  1381. for _, v := range allDataList {
  1382. currTime, tmpErr := time.ParseInLocation(utils.FormatDate, v.DataTime, time.Local)
  1383. if tmpErr != nil {
  1384. err = tmpErr
  1385. return
  1386. }
  1387. // 只是计算今年的
  1388. if currTime.Year() != currDayTime.Year() {
  1389. continue
  1390. }
  1391. currYearN++
  1392. currYearVal = currYearVal + v.Value
  1393. }
  1394. } else {
  1395. tmpDataList := make([]*EdbInfoSearchData, 0)
  1396. // 上一期的数据
  1397. var lastData *EdbInfoSearchData
  1398. // 是否第一条数据
  1399. isFirst := true
  1400. for _, v := range allDataList {
  1401. currTime, tmpErr := time.ParseInLocation(utils.FormatDate, v.DataTime, time.Local)
  1402. if tmpErr != nil {
  1403. err = tmpErr
  1404. return
  1405. }
  1406. // 只是计算今年的
  1407. if currTime.Year() != currDayTime.Year() {
  1408. lastData = v
  1409. continue
  1410. }
  1411. if isFirst {
  1412. tmpDataList = append(tmpDataList, lastData)
  1413. }
  1414. isFirst = false
  1415. tmpDataList = append(tmpDataList, v)
  1416. currYearN++
  1417. }
  1418. // 需要插值法处理
  1419. tmpHandleDataMap := make(map[string]float64)
  1420. _, err = HandleDataByLinearRegression(tmpDataList, tmpHandleDataMap)
  1421. if err != nil {
  1422. return
  1423. }
  1424. for tmpDate, val := range tmpHandleDataMap {
  1425. tmpDateTime, tmpErr := time.ParseInLocation(utils.FormatDate, tmpDate, time.Local)
  1426. if tmpErr != nil {
  1427. err = tmpErr
  1428. return
  1429. }
  1430. if tmpDateTime.Year() != currDayTime.Year() {
  1431. continue
  1432. }
  1433. currYearVal = currYearVal + val
  1434. }
  1435. currYearVal = currYearVal / 7
  1436. }
  1437. }
  1438. var averageVal float64
  1439. switch frequency {
  1440. case "半年度":
  1441. averageVal, _ = (decimal.NewFromFloat(yearValueConfig).Sub(decimal.NewFromFloat(currYearVal))).Div(decimal.NewFromInt(int64(2 - currYearN))).Float64()
  1442. case "季度":
  1443. averageVal, _ = (decimal.NewFromFloat(yearValueConfig).Sub(decimal.NewFromFloat(currYearVal))).Div(decimal.NewFromInt(int64(4 - currYearN))).Float64()
  1444. case "月度":
  1445. averageVal, _ = (decimal.NewFromFloat(yearValueConfig).Sub(decimal.NewFromFloat(currYearVal))).Div(decimal.NewFromInt(int64(12 - currYearN))).Float64()
  1446. case "旬度":
  1447. averageVal, _ = (decimal.NewFromFloat(yearValueConfig).Sub(decimal.NewFromFloat(currYearVal))).Div(decimal.NewFromInt(int64(36 - currYearN))).Float64()
  1448. case "周度", "日度":
  1449. //剩余期数=剩余自然日历天数/今年指标最新日期自然日历天数*今年至今指标数据期数
  1450. // 当前年的第一天
  1451. yearFirstDay := time.Date(currDayTime.Year(), 1, 1, 0, 0, 0, 0, time.Local)
  1452. subDay := utils.GetTimeSubDay(yearFirstDay, currDayTime) + 1
  1453. // 当前年的最后一天
  1454. yearLastDay := time.Date(currDayTime.Year(), 12, 31, 0, 0, 0, 0, time.Local)
  1455. subDay2 := utils.GetTimeSubDay(yearFirstDay, yearLastDay) + 1
  1456. // 剩余期数
  1457. surplusN := decimal.NewFromInt(int64(subDay2 - subDay)).Div(decimal.NewFromInt(int64(subDay))).Mul(decimal.NewFromInt(int64(currYearN)))
  1458. // 剩余余额
  1459. balance := decimal.NewFromFloat(annualValueInversionConf.Value).Sub(decimal.NewFromFloat(currYearVal))
  1460. averageVal, _ = balance.Div(surplusN).Round(utils.DataDigits).Float64()
  1461. }
  1462. // 保留四位小数
  1463. averageVal, _ = decimal.NewFromFloat(averageVal).Round(utils.DataDigits).Float64()
  1464. for k, currentDate := range dayList {
  1465. currentDateStr := currentDate.Format(utils.FormatDate)
  1466. tmpData := &EdbInfoSearchData{
  1467. EdbDataId: edbInfoId + 100000 + index + k,
  1468. //EdbInfoId: edbInfoId,
  1469. DataTime: currentDateStr,
  1470. Value: averageVal,
  1471. //DataTimestamp: currentDate.UnixNano() / 1e6,
  1472. }
  1473. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  1474. allDataList = append(allDataList, tmpData)
  1475. existMap[currentDateStr] = averageVal
  1476. }
  1477. // 最大最小值
  1478. if averageVal < minValue {
  1479. minValue = averageVal
  1480. }
  1481. if averageVal > maxValue {
  1482. maxValue = averageVal
  1483. }
  1484. return
  1485. }
  1486. // 同比法分配
  1487. // 同比法保证每期同比相等(同比增速=余额/同比年份相应日期的余额,预测值等于同比年份同期值*同比增速);
  1488. // 同比法分配:同比增速=900/同比年份5.19的余额
  1489. yearList := annualValueInversionConf.YearList
  1490. if len(yearList) == 0 {
  1491. //兼容历史数据
  1492. yearList = append(yearList, annualValueInversionConf.Year)
  1493. }
  1494. if len(yearList) == 0 {
  1495. err = errors.New("同比年份不能为空")
  1496. return
  1497. }
  1498. // 每年截止到当前日期的累计值
  1499. dateTotalMap := make(map[time.Time]float64)
  1500. //把每一期的期数和日期绑定
  1501. dateIndexMap := make(map[time.Time]int)
  1502. indexDateMap := make(map[int]time.Time)
  1503. // 每年的累计值(计算使用)
  1504. yearTotalMap := make(map[int]float64)
  1505. //数据按找后值填充的方式处理成连续自然日日度数据
  1506. allDataListMap := make(map[string]float64)
  1507. // todo 如果是日度和周度,用后置填充变频成连续自然日日度数据。计算1/1至指标最新日期(2024/3/3/1)的累计值
  1508. switch frequency {
  1509. case "日度", "周度":
  1510. for _, v := range allDataList {
  1511. allDataListMap[v.DataTime] = v.Value
  1512. }
  1513. //找到最早日期的的年份的1月1日,转成time格式
  1514. earliestYear := allDataList[0].DataTime[:4]
  1515. earliestYearFirstDay, _ := time.ParseInLocation(utils.FormatDate, earliestYear+"-01-01", time.Local)
  1516. days := int(currDayTime.Sub(earliestYearFirstDay).Hours() / float64(24))
  1517. //循环累加日期,直到循环到最新日期
  1518. for i := 0; i <= days; i++ {
  1519. currentDate := earliestYearFirstDay.AddDate(0, 0, i)
  1520. currentDateStr := currentDate.Format(utils.FormatDate)
  1521. val, ok := allDataListMap[currentDateStr]
  1522. if !ok { //如果不存在,则填充后值
  1523. //循环向后查找数据,直到找到
  1524. for j := i + 1; j <= days; j++ {
  1525. //循环往后取值
  1526. currentDateTmp := earliestYearFirstDay.AddDate(0, 0, j)
  1527. currentDateTmpStr := currentDateTmp.Format(utils.FormatDate)
  1528. if tmpVal, ok1 := allDataListMap[currentDateTmpStr]; ok1 {
  1529. allDataListMap[currentDateStr] = tmpVal
  1530. val = tmpVal
  1531. break
  1532. }
  1533. }
  1534. }
  1535. //计算每一天的年初至今累计值
  1536. yearVal := yearTotalMap[currentDate.Year()]
  1537. if frequency == "周度" {
  1538. // 每日累计值需要当前值除7
  1539. yearVal = yearVal + val/7
  1540. } else {
  1541. yearVal = yearVal + val
  1542. }
  1543. yearTotalMap[currentDate.Year()] = yearVal
  1544. dateTotalMap[currentDate] = yearVal
  1545. dateIndexMap[currentDate] = i
  1546. indexDateMap[i] = currentDate
  1547. }
  1548. default:
  1549. for k, v := range allDataList {
  1550. currTime, tmpErr := time.ParseInLocation(utils.FormatDate, v.DataTime, time.Local)
  1551. if tmpErr != nil {
  1552. err = tmpErr
  1553. return
  1554. }
  1555. allDataListMap[v.DataTime] = v.Value
  1556. yearVal := yearTotalMap[currTime.Year()]
  1557. yearVal = yearVal + v.Value
  1558. yearTotalMap[currTime.Year()] = yearVal
  1559. dateTotalMap[currTime] = yearVal
  1560. dateIndexMap[currTime] = k
  1561. indexDateMap[k] = currTime
  1562. }
  1563. }
  1564. // 当年的余额
  1565. currYearBalance := yearValueConfig - yearTotalMap[currDayTime.Year()]
  1566. //fmt.Printf("当年的余额%.4f=给定额度%.4f-当年累计值%.4f\n", currYearBalance, yearValueConfig, yearTotalMap[currDayTime.Year()])
  1567. // 循环统计同比年份同期余额
  1568. var sum, avg float64
  1569. for _, year := range yearList {
  1570. yearTotal := yearTotalMap[year]
  1571. //fmt.Printf("同比年份的累计值%.4f\n", yearTotal)
  1572. tmpDate := time.Date(year, currDayTime.Month(), currDayTime.Day(), 0, 0, 0, 0, currDayTime.Location())
  1573. //fmt.Printf("同比年份的同期%s\n", tmpDate)
  1574. dateTotal, ok := dateTotalMap[tmpDate]
  1575. //fmt.Printf("同比年份的同期累计值%.4f\n", dateTotal)
  1576. if ok {
  1577. sum = sum + (yearTotal - dateTotal)
  1578. } else {
  1579. // 查找下一期的余额
  1580. tmpIndex, ok1 := dateIndexMap[tmpDate]
  1581. if ok1 {
  1582. for tmpDateTime := indexDateMap[tmpIndex+1]; tmpDateTime.Year() == year; tmpDateTime = indexDateMap[tmpIndex+1] {
  1583. dateTotal, ok = dateTotalMap[tmpDateTime]
  1584. if ok {
  1585. //fmt.Printf("同比年份的同期累计值%.4f\n", dateTotal)
  1586. sum = sum + (yearTotal - dateTotal)
  1587. break
  1588. }
  1589. tmpIndex += 1
  1590. }
  1591. }
  1592. }
  1593. }
  1594. if sum == 0 {
  1595. err = errors.New("同比年份的累计值为0")
  1596. return
  1597. }
  1598. //fmt.Printf("同比年份的余额%.4f\n", sum)
  1599. avg = sum / float64(len(yearList))
  1600. //fmt.Printf("同比年份的余额%.4f\n", avg)
  1601. // 同比增速=当年余额/同比年份上一期日期的余额
  1602. tbVal := decimal.NewFromFloat(currYearBalance).Div(decimal.NewFromFloat(avg))
  1603. /*tbVal11, _ := tbVal.Round(utils.DataDigits).Float64()
  1604. fmt.Printf("同比增速%.4f\n", tbVal11)*/
  1605. //(同比增速=余额/同比年份相应日期的余额的平均值,预测值等于同比年份同期值*同比增速);
  1606. for k, currentDate := range dayList {
  1607. // 循环遍历多个同比年份
  1608. var valSum float64
  1609. for _, year := range yearList {
  1610. //多个同比年份的同期值的平均值
  1611. tmpCurrentDate := time.Date(year, currentDate.Month(), currentDate.Day(), 0, 0, 0, 0, currentDate.Location())
  1612. if tmpVal, ok := allDataListMap[tmpCurrentDate.Format(utils.FormatDate)]; ok {
  1613. valSum += tmpVal
  1614. } else {
  1615. // 查找下一期的余额
  1616. tmpIndex, ok1 := dateIndexMap[tmpCurrentDate]
  1617. if ok1 {
  1618. for tmpDateTime := indexDateMap[tmpIndex+1]; tmpDateTime.Year() == year; tmpDateTime = indexDateMap[tmpIndex+1] {
  1619. tmpVal, ok = allDataListMap[tmpDateTime.Format(utils.FormatDate)]
  1620. if ok {
  1621. valSum += tmpVal
  1622. break
  1623. }
  1624. tmpIndex += 1
  1625. }
  1626. }
  1627. }
  1628. }
  1629. lastDateVal := valSum / float64(len(yearList))
  1630. //预测值 = 同比年份同期值*同比增速
  1631. tmpVal, _ := decimal.NewFromFloat(lastDateVal).Mul(tbVal).Round(utils.DataDigits).Float64()
  1632. currentDateStr := currentDate.Format(utils.FormatDate)
  1633. tmpData := &EdbInfoSearchData{
  1634. EdbDataId: edbInfoId + 100000 + index + k,
  1635. //EdbInfoId: edbInfoId,
  1636. DataTime: currentDateStr,
  1637. Value: tmpVal,
  1638. //DataTimestamp: currentDate.UnixNano() / 1e6,
  1639. }
  1640. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  1641. allDataList = append(allDataList, tmpData)
  1642. existMap[currentDateStr] = tmpVal
  1643. yearVal := yearTotalMap[currentDate.Year()]
  1644. yearVal = yearVal + tmpVal
  1645. yearTotalMap[currentDate.Year()] = yearVal
  1646. dateTotalMap[currentDate] = yearVal
  1647. // 最大最小值
  1648. if tmpVal < minValue {
  1649. minValue = tmpVal
  1650. }
  1651. if tmpVal > maxValue {
  1652. maxValue = tmpVal
  1653. }
  1654. }
  1655. return
  1656. }
  1657. // getYearListBySeasonConf 根据配置获取年份列表
  1658. func getYearListBySeasonConf(configValue string) (yearList []int, seasonConf SeasonConf, err error) {
  1659. tmpErr := json.Unmarshal([]byte(configValue), &seasonConf)
  1660. if tmpErr != nil {
  1661. err = errors.New("年份配置信息异常:" + tmpErr.Error())
  1662. return
  1663. }
  1664. //选择方式,1:连续N年;2:指定年份
  1665. if seasonConf.YearType == 1 {
  1666. if seasonConf.NValue < 1 {
  1667. err = errors.New("连续N年不允许小于1")
  1668. return
  1669. }
  1670. currYear := time.Now().Year()
  1671. for i := 0; i < seasonConf.NValue; i++ {
  1672. yearList = append(yearList, currYear-i-1)
  1673. }
  1674. } else {
  1675. yearList = seasonConf.YearList
  1676. }
  1677. return
  1678. }
  1679. // GetChartPredictEdbInfoDataListByRuleDynamicYOYComparisonOrDifference 动态同比
  1680. // 2、指标选择范围为预测指标。
  1681. // 3、动态同比计算方法:预测值=去年同期值*(1+同比指标预测值)
  1682. // 4、上述“去年同期”如果没有严格对应的日期,则前后查找最近35天的值。
  1683. // 5、选择的同比指标日期需要与预测指标未来日期对应上,对应不上的不生成预测值。
  1684. func GetChartPredictEdbInfoDataListByRuleDynamicYOYComparisonOrDifference(ruleType, edbInfoId int, configValue string, dayList []time.Time, realPredictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
  1685. //预测指标的去年同期数据
  1686. baseDynamicDataList := make(map[string]decimal.Decimal, len(dayList))
  1687. //动态同比同差指标
  1688. DynamicCalculateDataList := make(map[string]decimal.Decimal, len(dayList))
  1689. index := len(realPredictEdbInfoData)
  1690. if index <= 0 {
  1691. return
  1692. }
  1693. dynamicYOYComparisonIndexId, err := strconv.Atoi(configValue)
  1694. if err != nil {
  1695. return
  1696. }
  1697. newPredictEdbInfoData = make([]*EdbInfoSearchData, 0, len(dayList))
  1698. // 获取同比预测指标的预测数据
  1699. dynamicYOYComparisonIndex, err := GetEdbInfoById(dynamicYOYComparisonIndexId)
  1700. if err != nil {
  1701. return
  1702. }
  1703. if dynamicYOYComparisonIndex.EdbInfoType != 1 {
  1704. err = errors.New("选择的指标不是预测指标")
  1705. return
  1706. }
  1707. startDate, endDate := dayList[0].Format(utils.FormatDate), dayList[len(dayList)-1].Format(utils.FormatDate)
  1708. //获取动态同比指标对应预测日期的预测数据
  1709. dynamicYOYComparisonIndexDataList, err := GetEdbDataList(dynamicYOYComparisonIndex.Source, dynamicYOYComparisonIndex.SubSource, dynamicYOYComparisonIndex.EdbInfoId, startDate, endDate)
  1710. if err != nil {
  1711. return
  1712. }
  1713. if len(dynamicYOYComparisonIndexDataList) <= 0 {
  1714. return
  1715. } else {
  1716. for _, v := range dynamicYOYComparisonIndexDataList {
  1717. DynamicCalculateDataList[v.DataTime] = decimal.NewFromFloat(v.Value)
  1718. }
  1719. }
  1720. var predictDayList []time.Time
  1721. //获取上一期的同期数据
  1722. for _, date := range dayList {
  1723. preDate := date.AddDate(-1, 0, 0)
  1724. preDateStr := preDate.Format(utils.FormatDate)
  1725. if preValue, ok := existMap[preDateStr]; ok { //上一年同期找到
  1726. baseDynamicDataList[preDateStr] = decimal.NewFromFloat(preValue)
  1727. predictDayList = append(predictDayList, date)
  1728. } else {
  1729. if replaceValue, replaceOk := getReplaceValue(existMap, 35, 1, -1, preDate); !replaceOk {
  1730. continue
  1731. } else {
  1732. baseDynamicDataList[preDateStr] = replaceValue
  1733. predictDayList = append(predictDayList, date)
  1734. }
  1735. }
  1736. }
  1737. //获取后面的预测数据
  1738. for k, currentDate := range predictDayList {
  1739. var calculateValue decimal.Decimal
  1740. var dateStr = currentDate.Format(utils.FormatDate)
  1741. preDate := currentDate.AddDate(-1, 0, 0)
  1742. preDateStr := preDate.Format(utils.FormatDate)
  1743. _, dynamicVal := DynamicCalculateDataList[dateStr]
  1744. _, baseVal := baseDynamicDataList[preDateStr]
  1745. if dynamicVal && baseVal {
  1746. switch ruleType {
  1747. case 17:
  1748. calculateValue = baseDynamicDataList[preDateStr].Mul(DynamicCalculateDataList[dateStr].Add(decimal.NewFromInt(1)))
  1749. case 18:
  1750. calculateValue = baseDynamicDataList[preDateStr].Add(DynamicCalculateDataList[dateStr])
  1751. default:
  1752. err = errors.New("计算规则不存在")
  1753. return
  1754. }
  1755. tmpData := &EdbInfoSearchData{
  1756. EdbDataId: edbInfoId + 100000 + index + k,
  1757. EdbInfoId: edbInfoId,
  1758. DataTime: currentDate.Format(utils.FormatDate),
  1759. DataTimestamp: currentDate.UnixNano() / 1e6,
  1760. }
  1761. var val = calculateValue.InexactFloat64()
  1762. tmpData.Value = val
  1763. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  1764. existMap[tmpData.DataTime] = val
  1765. if k == 0 {
  1766. minValue = val
  1767. maxValue = val
  1768. } else {
  1769. // 最大最小值
  1770. if val < minValue {
  1771. minValue = val
  1772. }
  1773. if val > maxValue {
  1774. maxValue = val
  1775. }
  1776. }
  1777. }
  1778. }
  1779. return
  1780. }
  1781. func getReplaceValue(replaceValueMap map[string]float64, days, dayStepForward int, dayStepBack int, currentDate time.Time) (replaceValue decimal.Decimal, success bool) {
  1782. nextDateDay := currentDate
  1783. backDateDay := currentDate
  1784. for i := 0; i <= days; i++ {
  1785. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  1786. if preValue, ok := replaceValueMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  1787. replaceValue = decimal.NewFromFloat(preValue)
  1788. success = true
  1789. return
  1790. }
  1791. backDateDayStr := backDateDay.Format(utils.FormatDate)
  1792. if backValue, ok := replaceValueMap[backDateDayStr]; ok { //上一年同期->下一个月找到
  1793. replaceValue = decimal.NewFromFloat(backValue)
  1794. success = true
  1795. return
  1796. }
  1797. nextDateDay = nextDateDay.AddDate(0, 0, dayStepForward)
  1798. backDateDay = nextDateDay.AddDate(0, 0, dayStepBack)
  1799. }
  1800. return decimal.NewFromInt(0), false
  1801. }