predict_edb.go 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935
  1. package logic
  2. import (
  3. "errors"
  4. "hongze/hongze_edb_lib/models"
  5. "hongze/hongze_edb_lib/services"
  6. "hongze/hongze_edb_lib/utils"
  7. "strconv"
  8. "strings"
  9. "time"
  10. )
  11. // AddPredictEdbInfo 新增预测指标
  12. func AddPredictEdbInfo(sourceEdbInfoId, classifyId int, edbName, dataDateType string, ruleList []models.RuleConfig, minValue, maxValue float64, sysUserId int, sysUserName string) (edbInfo *models.EdbInfo, err error, errMsg string) {
  13. var sourceEdbInfo *models.EdbInfo
  14. // 来源指标信息校验
  15. {
  16. sourceEdbInfo, err = models.GetEdbInfoById(sourceEdbInfoId)
  17. if err != nil && err.Error() != utils.ErrNoRow() {
  18. errMsg = "新增失败"
  19. err = errors.New("获取来源指标失败,Err:" + err.Error())
  20. return
  21. }
  22. if sourceEdbInfo == nil {
  23. errMsg = "找不到该来源指标"
  24. err = errors.New(errMsg)
  25. return
  26. }
  27. //必须是普通的指标
  28. if sourceEdbInfo.EdbInfoType != 0 {
  29. errMsg = "来源指标异常,不是普通的指标"
  30. err = errors.New(errMsg)
  31. return
  32. }
  33. //if !utils.InArrayByStr([]string{"日度", "周度", "月度", "年度"}, sourceEdbInfo.Frequency) {
  34. // errMsg = "预测指标只支持选择日度、周度、月度、年度的指标"
  35. // err = errors.New(errMsg)
  36. // return
  37. //}
  38. }
  39. var classifyInfo *models.EdbClassify
  40. // 来源分类信息校验
  41. {
  42. classifyInfo, err = models.GetEdbClassifyById(classifyId)
  43. if err != nil && err.Error() != utils.ErrNoRow() {
  44. errMsg = "新增失败"
  45. err = errors.New("获取预测指标分类失败,Err:" + err.Error())
  46. return
  47. }
  48. if classifyInfo == nil {
  49. errMsg = "找不到该预测指标分类"
  50. err = errors.New(errMsg)
  51. return
  52. }
  53. //必须是预测指标分类
  54. if classifyInfo.ClassifyType != 1 {
  55. errMsg = "预测指标分类异常,不是预测指标分类"
  56. err = errors.New(errMsg)
  57. return
  58. }
  59. }
  60. edbName = strings.Trim(edbName, " ")
  61. edbCode := sourceEdbInfo.EdbCode + "_" + time.Now().Format(utils.FormatShortDateTimeUnSpace)
  62. //判断指标名称是否存在
  63. var condition string
  64. var pars []interface{}
  65. condition += " AND edb_info_type=? "
  66. pars = append(pars, 1)
  67. condition += " AND edb_name=? "
  68. pars = append(pars, edbName)
  69. count, err := models.GetEdbInfoCountByCondition(condition, pars)
  70. if err != nil {
  71. errMsg = "判断指标名称是否存在失败"
  72. err = errors.New("判断指标名称是否存在失败,Err:" + err.Error())
  73. return
  74. }
  75. if count > 0 {
  76. errMsg = "指标名称已存在,请重新填写"
  77. err = errors.New(errMsg)
  78. return
  79. }
  80. timestamp := strconv.FormatInt(time.Now().UnixNano(), 10)
  81. if dataDateType == `` {
  82. dataDateType = `自然日`
  83. }
  84. edbInfo = &models.EdbInfo{
  85. //EdbInfoId: 0,
  86. EdbInfoType: 1,
  87. SourceName: "预测指标",
  88. Source: utils.DATA_SOURCE_PREDICT,
  89. EdbCode: edbCode,
  90. EdbName: edbName,
  91. EdbNameSource: edbName,
  92. Frequency: sourceEdbInfo.Frequency,
  93. Unit: sourceEdbInfo.Unit,
  94. StartDate: sourceEdbInfo.StartDate,
  95. ClassifyId: classifyId,
  96. SysUserId: sysUserId,
  97. SysUserRealName: sysUserName,
  98. UniqueCode: utils.MD5(utils.DATA_PREFIX + "_" + timestamp),
  99. CreateTime: time.Now(),
  100. ModifyTime: time.Now(),
  101. MinValue: minValue,
  102. MaxValue: maxValue,
  103. CalculateFormula: sourceEdbInfo.CalculateFormula,
  104. EdbType: 1,
  105. //Sort: sourceEdbInfo.,
  106. LatestDate: sourceEdbInfo.LatestDate,
  107. LatestValue: sourceEdbInfo.LatestValue,
  108. MoveType: sourceEdbInfo.MoveType,
  109. MoveFrequency: sourceEdbInfo.MoveFrequency,
  110. NoUpdate: sourceEdbInfo.NoUpdate,
  111. ServerUrl: "",
  112. DataDateType: dataDateType,
  113. }
  114. // 关联关系表
  115. calculateMappingList := make([]*models.EdbInfoCalculateMapping, 0)
  116. fromEdbMap := make(map[int]int)
  117. // 源指标关联关系表
  118. calculateMappingItem := &models.EdbInfoCalculateMapping{
  119. //EdbInfoCalculateMappingId: 0,
  120. //EdbInfoId: 0,
  121. Source: edbInfo.Source,
  122. SourceName: edbInfo.SourceName,
  123. EdbCode: edbInfo.EdbCode,
  124. FromEdbInfoId: sourceEdbInfo.EdbInfoId,
  125. FromEdbCode: sourceEdbInfo.EdbCode,
  126. FromEdbName: sourceEdbInfo.EdbName,
  127. FromSource: sourceEdbInfo.Source,
  128. FromSourceName: sourceEdbInfo.SourceName,
  129. //FromTag: "",
  130. Sort: 1,
  131. CreateTime: time.Now(),
  132. ModifyTime: time.Now(),
  133. }
  134. fromEdbMap[sourceEdbInfoId] = sourceEdbInfoId
  135. calculateMappingList = append(calculateMappingList, calculateMappingItem)
  136. // 动态环差 计算列表
  137. calculateRuleMap := make(map[int]models.CalculateRule, 0)
  138. // 预测指标配置
  139. predictEdbConfList := make([]*models.PredictEdbConf, 0)
  140. for ruleIndex, v := range ruleList {
  141. // 预测指标配置
  142. ruleEndDate, tmpErr := time.ParseInLocation(utils.FormatDate, v.EndDate, time.Local)
  143. if tmpErr != nil {
  144. errMsg = "规则配置的截止日期异常,请重新填写"
  145. err = errors.New(errMsg)
  146. return
  147. }
  148. //1:最新,2:固定值,3:同比,4:同差,5:环比,6:环差,7:N期移动均值,8:N期段线性外推值,9:动态环差,10:根据 给定终值后插值 规则获取预测数据,11:根据 季节性 规则获取预测数据,12:根据 移动平均同比 规则获取预测数据
  149. // 环比、环差、动态环差、季节性、移动平均同比不支持年度
  150. if sourceEdbInfo.Frequency == "年度" && utils.InArrayByInt([]int{5, 6, 11, 12}, v.RuleType) {
  151. errMsg = "环比、环差、动态环差、季节性、移动平均同比不支持年度指标"
  152. err = errors.New(errMsg)
  153. return
  154. }
  155. switch v.RuleType {
  156. case 8: //N期段线性外推值
  157. valInt, tmpErr := strconv.Atoi(v.Value)
  158. if tmpErr != nil {
  159. errMsg = "N期段线性外推值的N值异常"
  160. err = errors.New(errMsg)
  161. return
  162. }
  163. if valInt <= 1 {
  164. errMsg = "N期段线性外推值的N值必须大于1"
  165. err = errors.New(errMsg)
  166. return
  167. }
  168. case 9: //9:动态环差
  169. if v.Value == "" {
  170. errMsg = "请填写计算规则"
  171. err = errors.New(errMsg)
  172. return
  173. }
  174. formula := v.Value
  175. formula = strings.Replace(formula, "(", "(", -1)
  176. formula = strings.Replace(formula, ")", ")", -1)
  177. formula = strings.Replace(formula, ",", ",", -1)
  178. formula = strings.Replace(formula, "。", ".", -1)
  179. formula = strings.Replace(formula, "%", "*0.01", -1)
  180. v.Value = formula
  181. //检验公式
  182. var formulaStr string
  183. var edbInfoIdBytes []string
  184. for _, tmpEdbInfoId := range v.EdbInfoIdArr {
  185. formulaStr += tmpEdbInfoId.FromTag + ","
  186. edbInfoIdBytes = append(edbInfoIdBytes, tmpEdbInfoId.FromTag)
  187. }
  188. formulaMap := services.CheckFormula(formula)
  189. for _, formula := range formulaMap {
  190. if !strings.Contains(formulaStr, formula) {
  191. errMsg = "公式错误,请重新填写"
  192. err = errors.New(errMsg)
  193. return
  194. }
  195. }
  196. //关联的指标信息
  197. edbInfoList := make([]*models.EdbInfo, 0)
  198. // 动态环差规则 关系表
  199. trendsMappingList := make([]*models.PredictEdbConfCalculateMapping, 0)
  200. for k, tmpEdbInfoId := range v.EdbInfoIdArr {
  201. fromEdbInfo, tmpErr := models.GetEdbInfoById(tmpEdbInfoId.EdbInfoId)
  202. if tmpErr != nil {
  203. err = tmpErr
  204. if err.Error() == utils.ErrNoRow() {
  205. errMsg = "指标 " + strconv.Itoa(tmpEdbInfoId.EdbInfoId) + " 不存在"
  206. err = errors.New(errMsg)
  207. return
  208. }
  209. errMsg = "获取指标失败:Err:" + err.Error()
  210. err = errors.New(errMsg)
  211. return
  212. }
  213. edbInfoList = append(edbInfoList, fromEdbInfo)
  214. //总的 预测指标与所有相关联指标的关系表(不仅仅该条规则)
  215. {
  216. if _, ok := fromEdbMap[tmpEdbInfoId.EdbInfoId]; !ok {
  217. fromEdbMap[tmpEdbInfoId.EdbInfoId] = tmpEdbInfoId.EdbInfoId
  218. calculateMappingItem := &models.EdbInfoCalculateMapping{
  219. EdbInfoCalculateMappingId: 0,
  220. EdbInfoId: 0,
  221. Source: utils.DATA_SOURCE_CALCULATE,
  222. SourceName: "指标运算",
  223. EdbCode: "",
  224. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  225. FromEdbCode: fromEdbInfo.EdbCode,
  226. FromEdbName: fromEdbInfo.EdbName,
  227. FromSource: fromEdbInfo.Source,
  228. FromSourceName: fromEdbInfo.SourceName,
  229. //FromTag: tmpEdbInfoId.FromTag,
  230. Sort: k + 1,
  231. CreateTime: time.Now(),
  232. ModifyTime: time.Now(),
  233. }
  234. calculateMappingList = append(calculateMappingList, calculateMappingItem)
  235. }
  236. }
  237. // 动态环差规则 关系表
  238. tmpPredictEdbConfCalculateMapping := &models.PredictEdbConfCalculateMapping{
  239. //PredictEdbConfCalculateMappingId: 0,
  240. EdbInfoId: 0,
  241. ConfigId: 0,
  242. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  243. FromEdbCode: fromEdbInfo.EdbCode,
  244. FromEdbName: fromEdbInfo.EdbName,
  245. FromSource: fromEdbInfo.Source,
  246. FromSourceName: fromEdbInfo.SourceName,
  247. FromTag: tmpEdbInfoId.FromTag,
  248. Sort: k + 1,
  249. CreateTime: time.Now(),
  250. ModifyTime: time.Now(),
  251. }
  252. trendsMappingList = append(trendsMappingList, tmpPredictEdbConfCalculateMapping)
  253. }
  254. ok, _ := models.CheckFormula2(edbInfoList, formulaMap, formula, edbInfoIdBytes)
  255. if !ok {
  256. errMsg = "生成计算指标失败,请使用正确的计算公式"
  257. err = errors.New(errMsg)
  258. return
  259. }
  260. calculateRuleMap[ruleIndex] = models.CalculateRule{
  261. TrendsCalculateMappingList: trendsMappingList,
  262. EdbInfoList: edbInfoList,
  263. EdbInfoIdBytes: edbInfoIdBytes,
  264. Formula: formula,
  265. RuleType: v.RuleType,
  266. EndDate: v.EndDate,
  267. EdbInfoIdArr: v.EdbInfoIdArr,
  268. }
  269. case 14: //14:根据 一元线性拟合 规则获取预测数据
  270. if v.Value == "" {
  271. errMsg = "请填写一元线性拟合规则"
  272. err = errors.New(errMsg)
  273. return
  274. }
  275. //关联的指标信息
  276. edbInfoList := make([]*models.EdbInfo, 0)
  277. // 动态环差规则 关系表
  278. trendsMappingList := make([]*models.PredictEdbConfCalculateMapping, 0)
  279. for k, tmpEdbInfoId := range v.EdbInfoIdArr {
  280. fromEdbInfo, tmpErr := models.GetEdbInfoById(tmpEdbInfoId.EdbInfoId)
  281. if tmpErr != nil {
  282. err = tmpErr
  283. if err.Error() == utils.ErrNoRow() {
  284. errMsg = "指标 " + strconv.Itoa(tmpEdbInfoId.EdbInfoId) + " 不存在"
  285. err = errors.New(errMsg)
  286. return
  287. }
  288. errMsg = "获取指标失败:Err:" + err.Error()
  289. err = errors.New(errMsg)
  290. return
  291. }
  292. edbInfoList = append(edbInfoList, fromEdbInfo)
  293. //总的 预测指标与所有相关联指标的关系表(不仅仅该条规则)
  294. {
  295. if _, ok := fromEdbMap[tmpEdbInfoId.EdbInfoId]; !ok {
  296. fromEdbMap[tmpEdbInfoId.EdbInfoId] = tmpEdbInfoId.EdbInfoId
  297. tmpCalculateMappingItem := &models.EdbInfoCalculateMapping{
  298. EdbInfoCalculateMappingId: 0,
  299. EdbInfoId: 0,
  300. Source: utils.DATA_SOURCE_CALCULATE,
  301. SourceName: "指标运算",
  302. EdbCode: "",
  303. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  304. FromEdbCode: fromEdbInfo.EdbCode,
  305. FromEdbName: fromEdbInfo.EdbName,
  306. FromSource: fromEdbInfo.Source,
  307. FromSourceName: fromEdbInfo.SourceName,
  308. //FromTag: tmpEdbInfoId.FromTag,
  309. Sort: k + 1,
  310. CreateTime: time.Now(),
  311. ModifyTime: time.Now(),
  312. }
  313. calculateMappingList = append(calculateMappingList, tmpCalculateMappingItem)
  314. }
  315. }
  316. // 动态环差规则 关系表
  317. tmpPredictEdbConfCalculateMapping := &models.PredictEdbConfCalculateMapping{
  318. //PredictEdbConfCalculateMappingId: 0,
  319. EdbInfoId: 0,
  320. ConfigId: 0,
  321. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  322. FromEdbCode: fromEdbInfo.EdbCode,
  323. FromEdbName: fromEdbInfo.EdbName,
  324. FromSource: fromEdbInfo.Source,
  325. FromSourceName: fromEdbInfo.SourceName,
  326. FromTag: tmpEdbInfoId.FromTag,
  327. Sort: k + 1,
  328. CreateTime: time.Now(),
  329. ModifyTime: time.Now(),
  330. }
  331. trendsMappingList = append(trendsMappingList, tmpPredictEdbConfCalculateMapping)
  332. }
  333. calculateRuleMap[ruleIndex] = models.CalculateRule{
  334. TrendsCalculateMappingList: trendsMappingList,
  335. EdbInfoList: edbInfoList,
  336. //EdbInfoIdBytes: edbInfoIdBytes,
  337. //Formula: formula,
  338. RuleType: v.RuleType,
  339. EndDate: v.EndDate,
  340. EdbInfoIdArr: v.EdbInfoIdArr,
  341. }
  342. }
  343. tmpPredictEdbConf := &models.PredictEdbConf{
  344. PredictEdbInfoId: 0,
  345. SourceEdbInfoId: sourceEdbInfoId,
  346. RuleType: v.RuleType,
  347. //FixedValue: v.Value,
  348. Value: v.Value,
  349. EndDate: ruleEndDate,
  350. ModifyTime: time.Now(),
  351. CreateTime: time.Now(),
  352. }
  353. edbInfo.EndDate = v.EndDate
  354. predictEdbConfList = append(predictEdbConfList, tmpPredictEdbConf)
  355. }
  356. err, errMsg = models.AddPredictEdb(edbInfo, calculateMappingList, predictEdbConfList, calculateRuleMap)
  357. return
  358. }
  359. // EditPredictEdbInfo 编辑预测指标
  360. func EditPredictEdbInfo(edbInfoId, classifyId int, edbName, dataDateType string, ruleList []models.RuleConfig, minValue, maxValue float64) (edbInfo *models.EdbInfo, err error, errMsg string) {
  361. // 指标信息校验
  362. {
  363. edbInfo, err = models.GetEdbInfoById(edbInfoId)
  364. if err != nil && err.Error() != utils.ErrNoRow() {
  365. errMsg = "修改失败"
  366. err = errors.New("获取预测指标失败,Err:" + err.Error())
  367. return
  368. }
  369. if edbInfo == nil {
  370. errMsg = "找不到该预测指标"
  371. err = errors.New(errMsg)
  372. return
  373. }
  374. //必须是普通的指标
  375. if edbInfo.EdbInfoType != 1 {
  376. errMsg = "指标异常,不是预测指标"
  377. err = errors.New(errMsg)
  378. return
  379. }
  380. }
  381. var predictEdbConf *models.PredictEdbConf
  382. // 指标配置信息校验
  383. {
  384. // 查找该预测指标配置
  385. predictEdbConfList, tmpErr := models.GetPredictEdbConfListById(edbInfo.EdbInfoId)
  386. if tmpErr != nil && tmpErr.Error() != utils.ErrNoRow() {
  387. errMsg = "修改失败"
  388. err = errors.New("获取预测指标配置信息失败,Err:" + tmpErr.Error())
  389. return
  390. }
  391. if len(predictEdbConfList) == 0 {
  392. errMsg = "找不到该预测指标配置"
  393. err = errors.New(errMsg)
  394. return
  395. }
  396. predictEdbConf = predictEdbConfList[0]
  397. }
  398. //判断指标名称是否存在
  399. var condition string
  400. var pars []interface{}
  401. condition += " AND edb_info_id<>? "
  402. pars = append(pars, edbInfoId)
  403. condition += " AND edb_info_type=? "
  404. pars = append(pars, 1)
  405. condition += " AND edb_name=? "
  406. pars = append(pars, edbName)
  407. count, err := models.GetEdbInfoCountByCondition(condition, pars)
  408. if err != nil {
  409. errMsg = "判断指标名称是否存在失败"
  410. err = errors.New("判断指标名称是否存在失败,Err:" + err.Error())
  411. return
  412. }
  413. if count > 0 {
  414. errMsg = "指标名称已存在,请重新填写"
  415. err = errors.New(errMsg)
  416. return
  417. }
  418. if dataDateType == `` {
  419. dataDateType = `自然日`
  420. }
  421. edbInfo.EdbName = edbName
  422. edbInfo.EdbNameSource = edbName
  423. edbInfo.ClassifyId = classifyId
  424. edbInfo.MinValue = minValue
  425. edbInfo.MaxValue = maxValue
  426. edbInfo.DataDateType = dataDateType
  427. edbInfo.ModifyTime = time.Now()
  428. updateEdbInfoCol := []string{"EdbName", "EdbNameSource", "ClassifyId", "EndDate", "MinValue", "MaxValue", "DataDateType", "ModifyTime"}
  429. var sourceEdbInfo *models.EdbInfo
  430. // 来源指标信息校验
  431. {
  432. sourceEdbInfo, err = models.GetEdbInfoById(predictEdbConf.SourceEdbInfoId)
  433. if err != nil && err.Error() != utils.ErrNoRow() {
  434. errMsg = "新增失败"
  435. err = errors.New("获取来源指标失败,Err:" + err.Error())
  436. return
  437. }
  438. if sourceEdbInfo == nil {
  439. errMsg = "找不到该来源指标"
  440. err = errors.New(errMsg)
  441. return
  442. }
  443. //必须是普通的指标
  444. if sourceEdbInfo.EdbInfoType != 0 {
  445. errMsg = "来源指标异常,不是普通的指标"
  446. err = errors.New(errMsg)
  447. return
  448. }
  449. //if !utils.InArrayByStr([]string{"日度", "周度", "月度", "年度"}, sourceEdbInfo.Frequency) {
  450. // errMsg = "预测指标只支持选择日度、周度、月度、年度的指标"
  451. // err = errors.New(errMsg)
  452. // return
  453. //}
  454. }
  455. // 预测指标配置
  456. // 关联关系表
  457. calculateMappingList := make([]*models.EdbInfoCalculateMapping, 0)
  458. fromEdbMap := make(map[int]int)
  459. // 源指标关联关系表
  460. calculateMappingItem := &models.EdbInfoCalculateMapping{
  461. //EdbInfoCalculateMappingId: 0,
  462. EdbInfoId: edbInfoId,
  463. Source: edbInfo.Source,
  464. SourceName: edbInfo.SourceName,
  465. EdbCode: edbInfo.EdbCode,
  466. FromEdbInfoId: sourceEdbInfo.EdbInfoId,
  467. FromEdbCode: sourceEdbInfo.EdbCode,
  468. FromEdbName: sourceEdbInfo.EdbName,
  469. FromSource: sourceEdbInfo.Source,
  470. FromSourceName: sourceEdbInfo.SourceName,
  471. //FromTag: "",
  472. Sort: 1,
  473. CreateTime: time.Now(),
  474. ModifyTime: time.Now(),
  475. }
  476. fromEdbMap[sourceEdbInfo.EdbInfoId] = sourceEdbInfo.EdbInfoId
  477. calculateMappingList = append(calculateMappingList, calculateMappingItem)
  478. // 动态环差 计算列表
  479. calculateRuleMap := make(map[int]models.CalculateRule, 0)
  480. // 预测指标配置
  481. predictEdbConfList := make([]*models.PredictEdbConf, 0)
  482. for ruleIndex, v := range ruleList {
  483. // 预测指标配置
  484. ruleEndDate, tmpErr := time.ParseInLocation(utils.FormatDate, v.EndDate, time.Local)
  485. if tmpErr != nil {
  486. errMsg = "规则配置的截止日期异常,请重新填写"
  487. err = errors.New(errMsg)
  488. return
  489. }
  490. //1:最新,2:固定值,3:同比,4:同差,5:环比,6:环差,7:N期移动均值,8:N期段线性外推值,9:动态环差,10:根据 给定终值后插值 规则获取预测数据,11:根据 季节性 规则获取预测数据,12:根据 移动平均同比 规则获取预测数据
  491. // 环比、环差、动态环差、季节性、移动平均同比不支持年度
  492. if sourceEdbInfo.Frequency == "年度" && utils.InArrayByInt([]int{5, 6, 11, 12}, v.RuleType) {
  493. errMsg = "环比、环差、动态环差、季节性、移动平均同比不支持年度指标"
  494. err = errors.New(errMsg)
  495. return
  496. }
  497. switch v.RuleType {
  498. case 8: //N期段线性外推值
  499. valInt, tmpErr := strconv.Atoi(v.Value)
  500. if tmpErr != nil {
  501. errMsg = "N期段线性外推值的N值异常"
  502. err = errors.New(errMsg)
  503. return
  504. }
  505. if valInt <= 1 {
  506. errMsg = "N期段线性外推值的N值必须大于1"
  507. err = errors.New(errMsg)
  508. return
  509. }
  510. case 9: //9:动态环差
  511. if v.Value == "" {
  512. errMsg = "请填写计算规则"
  513. err = errors.New(errMsg)
  514. return
  515. }
  516. formula := v.Value
  517. formula = strings.Replace(formula, "(", "(", -1)
  518. formula = strings.Replace(formula, ")", ")", -1)
  519. formula = strings.Replace(formula, ",", ",", -1)
  520. formula = strings.Replace(formula, "。", ".", -1)
  521. formula = strings.Replace(formula, "%", "*0.01", -1)
  522. v.Value = formula
  523. //检验公式
  524. var formulaStr string
  525. var edbInfoIdBytes []string
  526. for _, tmpEdbInfoId := range v.EdbInfoIdArr {
  527. formulaStr += tmpEdbInfoId.FromTag + ","
  528. edbInfoIdBytes = append(edbInfoIdBytes, tmpEdbInfoId.FromTag)
  529. }
  530. formulaMap := services.CheckFormula(formula)
  531. for _, formula := range formulaMap {
  532. if !strings.Contains(formulaStr, formula) {
  533. errMsg = "公式错误,请重新填写"
  534. err = errors.New(errMsg)
  535. return
  536. }
  537. }
  538. //关联的指标信息
  539. edbInfoList := make([]*models.EdbInfo, 0)
  540. // 动态环差规则 关系表
  541. trendsMappingList := make([]*models.PredictEdbConfCalculateMapping, 0)
  542. for k, tmpEdbInfoId := range v.EdbInfoIdArr {
  543. fromEdbInfo, tmpErr := models.GetEdbInfoById(tmpEdbInfoId.EdbInfoId)
  544. if tmpErr != nil {
  545. err = tmpErr
  546. if err.Error() == utils.ErrNoRow() {
  547. errMsg = "指标 " + strconv.Itoa(tmpEdbInfoId.EdbInfoId) + " 不存在"
  548. err = errors.New(errMsg)
  549. return
  550. }
  551. errMsg = "获取指标失败:Err:" + err.Error()
  552. err = errors.New(errMsg)
  553. return
  554. }
  555. edbInfoList = append(edbInfoList, fromEdbInfo)
  556. //总的 预测指标与所有相关联指标的关系表(不仅仅该条规则)
  557. {
  558. if _, ok := fromEdbMap[tmpEdbInfoId.EdbInfoId]; !ok {
  559. fromEdbMap[tmpEdbInfoId.EdbInfoId] = tmpEdbInfoId.EdbInfoId
  560. calculateMappingItem := &models.EdbInfoCalculateMapping{
  561. EdbInfoCalculateMappingId: 0,
  562. EdbInfoId: edbInfoId,
  563. Source: utils.DATA_SOURCE_CALCULATE,
  564. SourceName: "指标运算",
  565. EdbCode: "",
  566. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  567. FromEdbCode: fromEdbInfo.EdbCode,
  568. FromEdbName: fromEdbInfo.EdbName,
  569. FromSource: fromEdbInfo.Source,
  570. FromSourceName: fromEdbInfo.SourceName,
  571. //FromTag: tmpEdbInfoId.FromTag,
  572. Sort: k + 1,
  573. CreateTime: time.Now(),
  574. ModifyTime: time.Now(),
  575. }
  576. calculateMappingList = append(calculateMappingList, calculateMappingItem)
  577. }
  578. }
  579. // 动态环差规则 关系表
  580. tmpPredictEdbConfCalculateMapping := &models.PredictEdbConfCalculateMapping{
  581. //PredictEdbConfCalculateMappingId: 0,
  582. EdbInfoId: edbInfoId,
  583. ConfigId: 0,
  584. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  585. FromEdbCode: fromEdbInfo.EdbCode,
  586. FromEdbName: fromEdbInfo.EdbName,
  587. FromSource: fromEdbInfo.Source,
  588. FromSourceName: fromEdbInfo.SourceName,
  589. FromTag: tmpEdbInfoId.FromTag,
  590. Sort: k + 1,
  591. CreateTime: time.Now(),
  592. ModifyTime: time.Now(),
  593. }
  594. trendsMappingList = append(trendsMappingList, tmpPredictEdbConfCalculateMapping)
  595. }
  596. ok, _ := models.CheckFormula2(edbInfoList, formulaMap, formula, edbInfoIdBytes)
  597. if !ok {
  598. errMsg = "生成计算指标失败,请使用正确的计算公式"
  599. err = errors.New(errMsg)
  600. return
  601. }
  602. calculateRuleMap[ruleIndex] = models.CalculateRule{
  603. TrendsCalculateMappingList: trendsMappingList,
  604. EdbInfoList: edbInfoList,
  605. EdbInfoIdBytes: edbInfoIdBytes,
  606. Formula: formula,
  607. RuleType: v.RuleType,
  608. EndDate: v.EndDate,
  609. EdbInfoIdArr: v.EdbInfoIdArr,
  610. }
  611. case 14: //14:根据 一元线性拟合 规则获取预测数据
  612. if v.Value == "" {
  613. errMsg = "请填写一元线性拟合规则"
  614. err = errors.New(errMsg)
  615. return
  616. }
  617. //关联的指标信息
  618. edbInfoList := make([]*models.EdbInfo, 0)
  619. // 动态环差规则 关系表
  620. trendsMappingList := make([]*models.PredictEdbConfCalculateMapping, 0)
  621. for k, tmpEdbInfoId := range v.EdbInfoIdArr {
  622. fromEdbInfo, tmpErr := models.GetEdbInfoById(tmpEdbInfoId.EdbInfoId)
  623. if tmpErr != nil {
  624. err = tmpErr
  625. if err.Error() == utils.ErrNoRow() {
  626. errMsg = "指标 " + strconv.Itoa(tmpEdbInfoId.EdbInfoId) + " 不存在"
  627. err = errors.New(errMsg)
  628. return
  629. }
  630. errMsg = "获取指标失败:Err:" + err.Error()
  631. err = errors.New(errMsg)
  632. return
  633. }
  634. edbInfoList = append(edbInfoList, fromEdbInfo)
  635. //总的 预测指标与所有相关联指标的关系表(不仅仅该条规则)
  636. {
  637. if _, ok := fromEdbMap[tmpEdbInfoId.EdbInfoId]; !ok {
  638. fromEdbMap[tmpEdbInfoId.EdbInfoId] = tmpEdbInfoId.EdbInfoId
  639. tmpCalculateMappingItem := &models.EdbInfoCalculateMapping{
  640. EdbInfoCalculateMappingId: 0,
  641. EdbInfoId: 0,
  642. Source: utils.DATA_SOURCE_CALCULATE,
  643. SourceName: "指标运算",
  644. EdbCode: "",
  645. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  646. FromEdbCode: fromEdbInfo.EdbCode,
  647. FromEdbName: fromEdbInfo.EdbName,
  648. FromSource: fromEdbInfo.Source,
  649. FromSourceName: fromEdbInfo.SourceName,
  650. //FromTag: tmpEdbInfoId.FromTag,
  651. Sort: k + 1,
  652. CreateTime: time.Now(),
  653. ModifyTime: time.Now(),
  654. }
  655. calculateMappingList = append(calculateMappingList, tmpCalculateMappingItem)
  656. }
  657. }
  658. // 动态环差规则 关系表
  659. tmpPredictEdbConfCalculateMapping := &models.PredictEdbConfCalculateMapping{
  660. //PredictEdbConfCalculateMappingId: 0,
  661. EdbInfoId: 0,
  662. ConfigId: 0,
  663. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  664. FromEdbCode: fromEdbInfo.EdbCode,
  665. FromEdbName: fromEdbInfo.EdbName,
  666. FromSource: fromEdbInfo.Source,
  667. FromSourceName: fromEdbInfo.SourceName,
  668. FromTag: tmpEdbInfoId.FromTag,
  669. Sort: k + 1,
  670. CreateTime: time.Now(),
  671. ModifyTime: time.Now(),
  672. }
  673. trendsMappingList = append(trendsMappingList, tmpPredictEdbConfCalculateMapping)
  674. }
  675. calculateRuleMap[ruleIndex] = models.CalculateRule{
  676. TrendsCalculateMappingList: trendsMappingList,
  677. EdbInfoList: edbInfoList,
  678. //EdbInfoIdBytes: edbInfoIdBytes,
  679. //Formula: formula,
  680. RuleType: v.RuleType,
  681. EndDate: v.EndDate,
  682. EdbInfoIdArr: v.EdbInfoIdArr,
  683. }
  684. }
  685. tmpPredictEdbConf := &models.PredictEdbConf{
  686. PredictEdbInfoId: edbInfoId,
  687. SourceEdbInfoId: sourceEdbInfo.EdbInfoId,
  688. RuleType: v.RuleType,
  689. //FixedValue: v.Value,
  690. Value: v.Value,
  691. EndDate: ruleEndDate,
  692. ModifyTime: time.Now(),
  693. CreateTime: time.Now(),
  694. }
  695. edbInfo.EndDate = v.EndDate
  696. predictEdbConfList = append(predictEdbConfList, tmpPredictEdbConf)
  697. }
  698. err, errMsg = models.EditPredictEdb(edbInfo, updateEdbInfoCol, calculateMappingList, predictEdbConfList, calculateRuleMap)
  699. return
  700. }
  701. // RefreshPredictEdbInfo 更新基础预测指标规则中的动态数据
  702. func RefreshPredictEdbInfo(edbInfoId int) (edbInfo *models.EdbInfo, err error, errMsg string) {
  703. // 指标信息校验
  704. {
  705. edbInfo, err = models.GetEdbInfoById(edbInfoId)
  706. if err != nil && err.Error() != utils.ErrNoRow() {
  707. errMsg = "刷新失败"
  708. err = errors.New("获取预测指标失败,Err:" + err.Error())
  709. return
  710. }
  711. if edbInfo == nil {
  712. errMsg = "找不到该预测指标"
  713. err = nil
  714. return
  715. }
  716. //必须是普通的指标
  717. if edbInfo.EdbInfoType != 1 {
  718. errMsg = "指标异常,不是预测指标"
  719. return
  720. }
  721. }
  722. // 配置 与 指标的 关联关系表
  723. list, err := models.GetPredictEdbConfCalculateMappingListByEdbInfoId(edbInfoId)
  724. if err != nil {
  725. return
  726. }
  727. // 没有关联指标,不需要刷新
  728. if len(list) <= 0 {
  729. return
  730. }
  731. // 配置关联的指标信息
  732. predictEdbConfCalculateMappingListMap := make(map[int][]*models.PredictEdbConfCalculateMapping)
  733. configIdList := make([]int, 0) //关联配置id
  734. edbInfoIdList := make([]int, 0) //关联指标配置id
  735. edbInfoIdMap := make(map[int]int, 0) //关联指标配置map
  736. for _, v := range list {
  737. configList, ok := predictEdbConfCalculateMappingListMap[v.ConfigId]
  738. if !ok {
  739. configList = make([]*models.PredictEdbConfCalculateMapping, 0)
  740. configIdList = append(configIdList, v.ConfigId)
  741. }
  742. if _, ok := edbInfoIdMap[v.FromEdbInfoId]; !ok {
  743. edbInfoIdList = append(edbInfoIdList, v.FromEdbInfoId)
  744. }
  745. configList = append(configList, v)
  746. predictEdbConfCalculateMappingListMap[v.ConfigId] = configList
  747. }
  748. predictEdbConfList, err := models.GetPredictEdbConfListByConfigIdList(configIdList)
  749. if err != nil {
  750. errMsg = "刷新失败"
  751. err = errors.New("获取预测指标配置信息失败,Err:" + err.Error())
  752. return
  753. }
  754. if len(predictEdbConfList) == 0 {
  755. errMsg = "找不到该预测指标配置"
  756. err = nil
  757. return
  758. }
  759. // 指标信息
  760. edbInfoList, err := models.GetEdbInfoByIdList(edbInfoIdList)
  761. if err != nil {
  762. err = errors.New("获取关联指标失败,Err:" + err.Error())
  763. return
  764. }
  765. // 指标信息map
  766. edbInfoListMap := make(map[int]*models.EdbInfo)
  767. for _, v := range edbInfoList {
  768. edbInfoListMap[v.EdbInfoId] = v
  769. }
  770. predictEdbConfAndDataList := make([]*models.PredictEdbConfAndData, 0)
  771. // 刷新所有的规则
  772. for _, v := range predictEdbConfList {
  773. // 每次规则计算的时候,产生的临时数据
  774. resultDataList := make([]*models.EdbInfoSearchData, 0)
  775. switch v.RuleType {
  776. case 9: //动态环差值
  777. if v.Value == "" {
  778. errMsg = "请填写计算规则"
  779. return
  780. }
  781. formula := v.Value
  782. // 动态环差规则 关系表
  783. trendsMappingList := predictEdbConfCalculateMappingListMap[v.ConfigId]
  784. // 关联标签
  785. edbInfoIdArr := make([]models.EdbInfoFromTag, 0)
  786. //关联的指标信息
  787. edbInfoList := make([]*models.EdbInfo, 0)
  788. for _, trendsMapping := range trendsMappingList {
  789. tmpEdbInfo, ok := edbInfoListMap[trendsMapping.FromEdbInfoId]
  790. if ok {
  791. edbInfoList = append(edbInfoList, tmpEdbInfo)
  792. }
  793. // 关联标签
  794. edbInfoIdArr = append(edbInfoIdArr, models.EdbInfoFromTag{
  795. EdbInfoId: trendsMapping.FromEdbInfoId,
  796. FromTag: trendsMapping.FromTag,
  797. })
  798. }
  799. //检验公式
  800. var formulaStr string
  801. var edbInfoIdBytes []string
  802. for _, tmpEdbInfoId := range edbInfoIdArr {
  803. formulaStr += tmpEdbInfoId.FromTag + ","
  804. edbInfoIdBytes = append(edbInfoIdBytes, tmpEdbInfoId.FromTag)
  805. }
  806. formulaMap := services.CheckFormula(formula)
  807. for _, formula := range formulaMap {
  808. if !strings.Contains(formulaStr, formula) {
  809. errMsg = "公式错误,请重新填写"
  810. return
  811. }
  812. }
  813. ok, _ := models.CheckFormula2(edbInfoList, formulaMap, formula, edbInfoIdBytes)
  814. if !ok {
  815. errMsg = "生成计算指标失败,请使用正确的计算公式"
  816. return
  817. }
  818. rule := models.CalculateRule{
  819. EdbInfoId: v.PredictEdbInfoId,
  820. ConfigId: v.ConfigId,
  821. TrendsCalculateMappingList: trendsMappingList,
  822. EdbInfoList: edbInfoList,
  823. EdbInfoIdBytes: edbInfoIdBytes,
  824. Formula: formula,
  825. RuleType: v.RuleType,
  826. EndDate: v.EndDate.Format(utils.FormatDate),
  827. EdbInfoIdArr: edbInfoIdArr,
  828. }
  829. resultDataList, err = models.RefreshCalculateByRuleBy9(rule)
  830. if err != nil {
  831. return
  832. }
  833. case 14: //14:根据 一元线性拟合 规则获取预测数据
  834. if v.Value == "" {
  835. errMsg = "一元线性拟合规则信息未配置"
  836. return
  837. }
  838. err, errMsg = models.RefreshCalculateByRuleByLineNh(*edbInfo, predictEdbConfAndDataList, *v)
  839. if err != nil {
  840. return
  841. }
  842. }
  843. // 规则配置(含数据)
  844. tmpPredictEdbConfAndData := &models.PredictEdbConfAndData{
  845. ConfigId: 0,
  846. PredictEdbInfoId: 0,
  847. SourceEdbInfoId: v.SourceEdbInfoId,
  848. RuleType: v.RuleType,
  849. FixedValue: v.FixedValue,
  850. Value: v.Value,
  851. EndDate: v.EndDate,
  852. ModifyTime: v.ModifyTime,
  853. CreateTime: v.CreateTime,
  854. DataList: resultDataList,
  855. }
  856. predictEdbConfAndDataList = append(predictEdbConfAndDataList, tmpPredictEdbConfAndData)
  857. }
  858. return
  859. }