predict_edb_data_calculate_ljztbpj.go 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604
  1. package models
  2. import (
  3. "errors"
  4. "fmt"
  5. "github.com/beego/beego/v2/client/orm"
  6. "github.com/shopspring/decimal"
  7. "hongze/hongze_edb_lib/utils"
  8. "sort"
  9. "strings"
  10. "time"
  11. )
  12. // EdbDataPredictCalculateLjztbpj 累计值同比拼接数据结构体
  13. type EdbDataPredictCalculateLjztbpj struct {
  14. EdbDataId int `orm:"column(edb_data_id);pk"`
  15. EdbInfoId int
  16. EdbCode string
  17. DataTime string
  18. Value float64
  19. Status int
  20. CreateTime time.Time
  21. ModifyTime time.Time
  22. DataTimestamp int64
  23. }
  24. // SavePredictCalculateLjztbpj 新增累计值同比拼接数据
  25. func SavePredictCalculateLjztbpj(req *EdbInfoCalculateBatchSaveReq, firstEdbInfo, secondEdbInfo *EdbInfo, edbCode, uniqueCode string, sysUserId int, sysUserRealName string) (edbInfo *EdbInfo, latestDateStr string, latestValue float64, err error) {
  26. o := orm.NewOrm()
  27. to, err := o.Begin()
  28. if err != nil {
  29. return
  30. }
  31. defer func() {
  32. if err != nil {
  33. fmt.Println("SavePredictCalculateLjztbpj,Err:" + err.Error())
  34. _ = to.Rollback()
  35. } else {
  36. _ = to.Commit()
  37. }
  38. }()
  39. //最近开始的时间
  40. var lastDateTime time.Time
  41. var existItemA, existItemB *EdbInfoCalculateMapping
  42. //获取待拼接指标
  43. {
  44. /*var condition string
  45. var pars []interface{}
  46. //获取待拼接指标最近的个12月31日有值的年份
  47. condition += " AND data_time like ? AND edb_info_id=? "
  48. pars = append(pars, "%12-31", firstEdbInfo.EdbInfoId)
  49. lastEdbData, tmpErr := GetLastEdbData(condition, pars, firstEdbInfo.Source)
  50. if tmpErr != nil {
  51. err = tmpErr
  52. return
  53. }*/
  54. var firstDataList []*EdbInfoSearchData
  55. var lastEdbData *EdbInfoSearchData
  56. firstDataList, err = GetPredictEdbDataListAllByStartDate(firstEdbInfo, 0, "")
  57. if err != nil {
  58. return
  59. }
  60. for _, v := range firstDataList {
  61. if strings.Contains(v.DataTime, "-12-31") {
  62. lastEdbData = v
  63. }
  64. }
  65. if lastEdbData == nil {
  66. err = errors.New("找不到最近的12月31号")
  67. return
  68. }
  69. lastDateTime, _ = time.ParseInLocation(utils.FormatDate, lastEdbData.DataTime, time.Local)
  70. }
  71. if req.EdbInfoId <= 0 {
  72. edbInfo = &EdbInfo{
  73. EdbInfoType: 1,
  74. SourceName: "预测累计值同比拼接",
  75. Source: utils.DATA_SOURCE_PREDICT_CALCULATE_LJZTBPJ,
  76. EdbCode: edbCode,
  77. EdbName: req.EdbName,
  78. EdbNameSource: req.EdbName,
  79. Frequency: req.Frequency,
  80. Unit: req.Unit,
  81. StartDate: firstEdbInfo.StartDate,
  82. EndDate: firstEdbInfo.EndDate,
  83. ClassifyId: req.ClassifyId,
  84. SysUserId: sysUserId,
  85. SysUserRealName: sysUserRealName,
  86. UniqueCode: uniqueCode,
  87. CreateTime: time.Now(),
  88. ModifyTime: time.Now(),
  89. CalculateFormula: lastDateTime.Format(utils.FormatDate),
  90. EdbType: 2,
  91. }
  92. newEdbInfoId, tmpErr := to.Insert(edbInfo)
  93. if tmpErr != nil {
  94. err = tmpErr
  95. return
  96. }
  97. edbInfo.EdbInfoId = int(newEdbInfoId)
  98. //关联关系
  99. {
  100. existItemA = &EdbInfoCalculateMapping{
  101. EdbInfoCalculateMappingId: 0,
  102. EdbInfoId: edbInfo.EdbInfoId,
  103. Source: edbInfo.Source,
  104. SourceName: edbInfo.SourceName,
  105. EdbCode: edbInfo.EdbCode,
  106. FromEdbInfoId: firstEdbInfo.EdbInfoId,
  107. FromEdbCode: firstEdbInfo.EdbCode,
  108. FromEdbName: firstEdbInfo.EdbName,
  109. FromSource: firstEdbInfo.Source,
  110. FromSourceName: firstEdbInfo.SourceName,
  111. FromTag: "A",
  112. Sort: 1,
  113. CreateTime: time.Now(),
  114. ModifyTime: time.Now(),
  115. }
  116. insertId, tmpErr := to.Insert(existItemA)
  117. if tmpErr != nil {
  118. err = tmpErr
  119. return
  120. }
  121. existItemA.EdbInfoCalculateMappingId = int(insertId)
  122. }
  123. //同比值指标
  124. {
  125. existItemB = &EdbInfoCalculateMapping{
  126. EdbInfoCalculateMappingId: 0,
  127. EdbInfoId: edbInfo.EdbInfoId,
  128. Source: edbInfo.Source,
  129. SourceName: edbInfo.SourceName,
  130. EdbCode: edbInfo.EdbCode,
  131. FromEdbInfoId: secondEdbInfo.EdbInfoId,
  132. FromEdbCode: secondEdbInfo.EdbCode,
  133. FromEdbName: secondEdbInfo.EdbName,
  134. FromSource: secondEdbInfo.Source,
  135. FromSourceName: secondEdbInfo.SourceName,
  136. FromTag: "B",
  137. Sort: 1,
  138. CreateTime: time.Now(),
  139. ModifyTime: time.Now(),
  140. }
  141. insertId, tmpErr := to.Insert(existItemB)
  142. if tmpErr != nil {
  143. err = tmpErr
  144. return
  145. }
  146. existItemB.EdbInfoCalculateMappingId = int(insertId)
  147. }
  148. } else {
  149. edbInfo, err = GetEdbInfoById(req.EdbInfoId)
  150. if err != nil {
  151. return
  152. }
  153. nowEdbInfo := *edbInfo // 现在的指标信息
  154. sql := ``
  155. //修改指标信息
  156. edbInfo.EdbNameSource = req.EdbName
  157. edbInfo.Frequency = req.Frequency
  158. edbInfo.Unit = req.Unit
  159. edbInfo.ClassifyId = req.ClassifyId
  160. edbInfo.CalculateFormula = lastDateTime.Format(utils.FormatDate)
  161. edbInfo.ModifyTime = time.Now()
  162. _, err = to.Update(edbInfo, "EdbName", "EdbNameSource", "Frequency", "Unit", "ClassifyId", "CalculateFormula", "ModifyTime")
  163. if err != nil {
  164. return
  165. }
  166. //查询出所有的关联指标
  167. var existCondition string
  168. var existPars []interface{}
  169. existCondition += " AND edb_info_id=? "
  170. existPars = append(existPars, edbInfo.EdbInfoId)
  171. var existList []*EdbInfoCalculateMapping
  172. existList, err = GetEdbInfoCalculateListByCondition(existCondition, existPars)
  173. if err != nil {
  174. err = errors.New("判断指标是否改变失败,Err:" + err.Error())
  175. return
  176. }
  177. for _, existItem := range existList {
  178. if existItem.FromTag == "A" {
  179. existItemA = existItem
  180. } else if existItem.FromTag == "B" {
  181. existItemB = existItem
  182. }
  183. }
  184. if existItemA == nil {
  185. err = errors.New("原待拼接指标不存在")
  186. return
  187. }
  188. if existItemB == nil {
  189. err = errors.New("原同比值指标不存在")
  190. return
  191. }
  192. // 是否需要删除数据重新计算
  193. isNeedCalculateData := false
  194. // 如果截止日期变更,那么需要重新计算
  195. if lastDateTime.Format(utils.FormatDate) != nowEdbInfo.CalculateFormula {
  196. isNeedCalculateData = true
  197. }
  198. //待拼接指标数据
  199. //如果拼接指标变更了,那么需要删除所有的指标进行重新拼接
  200. if existItemA.FromEdbInfoId != firstEdbInfo.EdbInfoId {
  201. //删除之前的A指标关联关系
  202. sql = ` DELETE FROM edb_info_calculate_mapping WHERE edb_info_id = ? and from_edb_info_id = ?`
  203. _, err = to.Raw(sql, edbInfo.EdbInfoId, existItemA.FromEdbInfoId).Exec()
  204. if err != nil {
  205. err = errors.New("删除拼接日期之前的指标关联关系失败,Err:" + err.Error())
  206. return
  207. }
  208. }
  209. //同比值指标
  210. if existItemB.FromEdbInfoId != secondEdbInfo.EdbInfoId {
  211. //删除之前的B指标关联关系
  212. sql = ` DELETE FROM edb_info_calculate_mapping WHERE edb_info_id = ? and from_edb_info_id = ?`
  213. _, err = to.Raw(sql, edbInfo.EdbInfoId, existItemB.FromEdbInfoId).Exec()
  214. if err != nil {
  215. err = errors.New("删除拼接日期之后的指标关联关系失败,Err:" + err.Error())
  216. return
  217. }
  218. }
  219. //添加新的指标关系
  220. if existItemA.FromEdbInfoId != firstEdbInfo.EdbInfoId {
  221. existItemA = &EdbInfoCalculateMapping{
  222. EdbInfoCalculateMappingId: 0,
  223. EdbInfoId: edbInfo.EdbInfoId,
  224. Source: edbInfo.Source,
  225. SourceName: edbInfo.SourceName,
  226. EdbCode: edbInfo.EdbCode,
  227. FromEdbInfoId: firstEdbInfo.EdbInfoId,
  228. FromEdbCode: firstEdbInfo.EdbCode,
  229. FromEdbName: firstEdbInfo.EdbName,
  230. FromSource: firstEdbInfo.Source,
  231. FromSourceName: firstEdbInfo.SourceName,
  232. FromTag: "A",
  233. Sort: 1,
  234. CreateTime: time.Now(),
  235. ModifyTime: time.Now(),
  236. }
  237. insertId, tmpErr := to.Insert(existItemA)
  238. if tmpErr != nil {
  239. err = tmpErr
  240. return
  241. }
  242. existItemA.EdbInfoCalculateMappingId = int(insertId)
  243. isNeedCalculateData = true
  244. }
  245. //添加新的指标关系
  246. if existItemB.FromEdbInfoId != secondEdbInfo.EdbInfoId {
  247. existItemB = &EdbInfoCalculateMapping{
  248. EdbInfoCalculateMappingId: 0,
  249. EdbInfoId: edbInfo.EdbInfoId,
  250. Source: edbInfo.Source,
  251. SourceName: edbInfo.SourceName,
  252. EdbCode: edbInfo.EdbCode,
  253. FromEdbInfoId: secondEdbInfo.EdbInfoId,
  254. FromEdbCode: secondEdbInfo.EdbCode,
  255. FromEdbName: secondEdbInfo.EdbName,
  256. FromSource: secondEdbInfo.Source,
  257. FromSourceName: secondEdbInfo.SourceName,
  258. FromTag: "B",
  259. Sort: 2,
  260. CreateTime: time.Now(),
  261. ModifyTime: time.Now(),
  262. }
  263. insertId, tmpErr := to.Insert(existItemB)
  264. if tmpErr != nil {
  265. err = tmpErr
  266. return
  267. }
  268. existItemB.EdbInfoCalculateMappingId = int(insertId)
  269. isNeedCalculateData = true
  270. }
  271. // 如果需要重新计算,那么先删除所有的指标数据,然后再重新计算
  272. if isNeedCalculateData {
  273. // 删除之前所有的指标数据
  274. tableName := GetEdbDataTableName(edbInfo.Source)
  275. sql = fmt.Sprintf(` DELETE FROM %s WHERE edb_info_id = ? `, tableName)
  276. _, err = to.Raw(sql, edbInfo.EdbInfoId).Exec()
  277. if err != nil {
  278. err = errors.New("删除所有的累计值同比拼接指标数据失败,Err:" + err.Error())
  279. return
  280. }
  281. }else{
  282. return
  283. }
  284. }
  285. // 添加数据
  286. latestDateStr, latestValue, err = refreshAllPredictCalculateLjztbpj(to, edbInfo, firstEdbInfo, secondEdbInfo, existItemB)
  287. return
  288. }
  289. // RefreshAllPredictCalculateLjztbpj 刷新所有 累计值同比拼接 数据
  290. func RefreshAllPredictCalculateLjztbpj(edbInfo *EdbInfo) (latestDateStr string, latestValue float64, err error) {
  291. o := orm.NewOrm()
  292. to, err := o.Begin()
  293. if err != nil {
  294. return
  295. }
  296. defer func() {
  297. if err != nil {
  298. fmt.Println("RefreshAllCalculateLjztbpj,Err:" + err.Error())
  299. _ = to.Rollback()
  300. } else {
  301. _ = to.Commit()
  302. }
  303. }()
  304. //查询关联指标信息
  305. var existCondition string
  306. var existPars []interface{}
  307. existCondition += " AND edb_info_id=? "
  308. existPars = append(existPars, edbInfo.EdbInfoId)
  309. existList, err := GetEdbInfoCalculateListByCondition(existCondition, existPars)
  310. if err != nil {
  311. err = errors.New("判断指标是否改变失败,Err:" + err.Error())
  312. return
  313. }
  314. var existItemA, existItemB *EdbInfoCalculateMapping
  315. for _, existItem := range existList {
  316. if existItem.FromTag == "A" {
  317. existItemA = existItem
  318. } else if existItem.FromTag == "B" {
  319. existItemB = existItem
  320. }
  321. }
  322. if existItemA == nil {
  323. err = errors.New("原待拼接指标不存在")
  324. return
  325. }
  326. if existItemB == nil {
  327. err = errors.New("原同比值指标不存在")
  328. return
  329. }
  330. fromEdbInfo, err := GetEdbInfoById(existItemA.FromEdbInfoId)
  331. if err != nil {
  332. err = fmt.Errorf("GetEdbInfoById Err:" + err.Error())
  333. return
  334. }
  335. secondEdbInfo, err := GetEdbInfoById(existItemB.FromEdbInfoId)
  336. if err != nil {
  337. err = fmt.Errorf("GetEdbInfoById Err:" + err.Error())
  338. return
  339. }
  340. // 刷新数据
  341. latestDateStr, latestValue, err = refreshAllPredictCalculateLjztbpj(to, edbInfo, fromEdbInfo, secondEdbInfo, existItemB)
  342. return
  343. }
  344. // refreshAllPredictCalculateLjztbpj 刷新所有 累计值同比拼接 数据
  345. func refreshAllPredictCalculateLjztbpj(to orm.TxOrmer, edbInfo, firstEdbInfo, secondEdbInfo *EdbInfo, existItemB *EdbInfoCalculateMapping) (latestDateStr string, latestValue float64, err error) {
  346. //根据指标id获取全部的数据
  347. var dataList []*EdbDataPredictCalculateLjztbpj
  348. sql := ` SELECT * FROM edb_data_predict_calculate_ljztbpj WHERE edb_info_id=? ORDER BY data_time DESC `
  349. _, err = to.Raw(sql, edbInfo.EdbInfoId).QueryRows(&dataList)
  350. if err != nil {
  351. return
  352. }
  353. latestDateStr = secondEdbInfo.LatestDate
  354. //待拼接指标map
  355. pjDataMap := make(map[string]float64) //需要入库的数据
  356. nowEdbDataMap := make(map[string]float64) //当前指标的数据(已经在库里了,不需要重新)
  357. //拼接指标的日期切片数据
  358. pjEdbDataTimeList := make([]string, 0)
  359. dataMap := make(map[string]*EdbDataPredictCalculateLjztbpj)
  360. for _, v := range dataList {
  361. pjEdbDataTimeList = append(pjEdbDataTimeList, v.DataTime)
  362. dataMap[v.DataTime] = v
  363. nowEdbDataMap[v.DataTime] = v.Value
  364. }
  365. // 原数据开始计算日期
  366. startCalculationDate, _ := time.ParseInLocation(utils.FormatDate, edbInfo.CalculateFormula, time.Local)
  367. //待拼接指标
  368. {
  369. /*var condition string
  370. var pars []interface{}
  371. condition += " AND data_time <= ? AND edb_info_id=? "
  372. pars = append(pars, startCalculationDate, existItemA.FromEdbInfoId)
  373. //第一个指标的数据列表
  374. firstDataList, tmpErr := GetEdbDataListAllByTo(to, condition, pars, existItemA.FromSource, 0)
  375. if tmpErr != nil {
  376. err = tmpErr
  377. return
  378. }*/
  379. var firstDataList []*EdbInfoSearchData
  380. firstDataList, err = GetPredictEdbDataListAllByStartDate(firstEdbInfo, 0, "")
  381. if err != nil {
  382. return
  383. }
  384. for _, v := range firstDataList {
  385. if v.DataTime > startCalculationDate.Format(utils.FormatDate) {
  386. continue
  387. }
  388. //时间戳
  389. if edbData, ok := dataMap[v.DataTime]; ok {
  390. if edbData.Value != v.Value {
  391. //更新指标数据
  392. edbData.Value = v.Value
  393. _, _ = to.Update(edbData, "Value")
  394. }
  395. } else {
  396. pjDataMap[v.DataTime] = v.Value
  397. pjEdbDataTimeList = append(pjEdbDataTimeList, v.DataTime)
  398. }
  399. //将新的数据存入已入库指标map里面,以便后续计算
  400. nowEdbDataMap[v.DataTime] = v.Value
  401. }
  402. }
  403. //同比值指标map
  404. tbzEdbDataMap := make(map[string]float64)
  405. //同比值日期切片列表
  406. tbzEdbDataTimeList := make([]string, 0)
  407. //同比值指标
  408. {
  409. var condition string
  410. pars := make([]interface{}, 0)
  411. condition += " AND data_time > ? AND edb_info_id = ? "
  412. pars = append(pars, startCalculationDate, existItemB.FromEdbInfoId)
  413. //第二个指标的数据列表
  414. secondDataList, tmpErr := GetEdbDataListAllByTo(to, condition, pars, existItemB.FromSource, 0)
  415. if tmpErr != nil {
  416. err = tmpErr
  417. return
  418. }
  419. for _, v := range secondDataList {
  420. tbzEdbDataMap[v.DataTime] = v.Value
  421. tbzEdbDataTimeList = append(tbzEdbDataTimeList, v.DataTime)
  422. }
  423. }
  424. sort.Strings(tbzEdbDataTimeList)
  425. // 遍历现有的数据,判断拼接指标中是否存在该日期数据,如果拼接指标无此数据,那么需要删除该日期数据(日期的判断:需要在开始计算日期之后)
  426. removeDateList := make([]string, 0)
  427. for nowEdbDate := range nowEdbDataMap {
  428. nowEdbDateTime, _ := time.ParseInLocation(utils.FormatDate, nowEdbDate, time.Local)
  429. //校验日期 需要 大于 拼接前日期
  430. if startCalculationDate.Before(nowEdbDateTime) {
  431. if _, ok := tbzEdbDataMap[nowEdbDate]; !ok {
  432. // 同比指标中,不存在该日期数据,那么需要移除 现有数据 中该日期的数据
  433. removeDateList = append(removeDateList, nowEdbDate)
  434. }
  435. }
  436. }
  437. //待修改的指标数据map(index:日期,value:值)
  438. updateEdbDataMap := make(map[string]float64)
  439. for _, v := range tbzEdbDataTimeList {
  440. tbzDataTime, _ := time.ParseInLocation(utils.FormatDate, v, time.Local)
  441. //获取拼接指标上一年同一天的数据
  442. var pjDataTime time.Time
  443. if tbzDataTime.Month() == 2 {
  444. pjDataTime = tbzDataTime.AddDate(0, -11, 0)
  445. pjDataTime = time.Date(pjDataTime.Year(), pjDataTime.Month(), 1, 0, 0, 0, 0, time.Now().Location()).AddDate(0, 0, -1)
  446. } else {
  447. pjDataTime = tbzDataTime.AddDate(-1, 0, 0)
  448. }
  449. //校验现有数据中,是否存在该日期的数据,如果存在的话,那么就要去校验 最新计算数据 与 现有数据 是否一致
  450. if nowEdbDataValue, isHas := nowEdbDataMap[v]; isHas {
  451. //获取去年今日的数据,获取到后,然后是去修改该日期的数据
  452. if lastYearEdbDataValue, ok := nowEdbDataMap[pjDataTime.Format(utils.FormatDate)]; ok {
  453. tbzDataValue := tbzEdbDataMap[v] //同比值
  454. currValue := lastYearEdbDataValue * (1 + tbzDataValue/100)
  455. currValue, _ = decimal.NewFromFloat(currValue).Truncate(4).Float64() //保留4位小数
  456. //如果计算出来的值与库里面的值不匹配,那么就去修改该值
  457. if nowEdbDataValue != currValue {
  458. //将计算后的数据存入待拼接指标map里面,以便后续计算
  459. updateEdbDataMap[v] = currValue
  460. }
  461. }
  462. } else {
  463. //因为 现有数据中 不存在该日期数据,那么需要做新增数据处理
  464. //如果去年今日存在该数据,那么就去计算当前的数据
  465. if pjDataValue, ok := nowEdbDataMap[pjDataTime.Format(utils.FormatDate)]; ok {
  466. tbzDataValue := tbzEdbDataMap[v] //同比值
  467. currValue := pjDataValue * (1 + tbzDataValue/100)
  468. currValue, _ = decimal.NewFromFloat(currValue).Truncate(4).Float64()
  469. //将计算后的数据存入已入库指标map里面,以便后续计算
  470. nowEdbDataMap[v] = currValue
  471. //将计算后的数据存入待拼接指标map里面,以便后续入库
  472. pjDataMap[v] = currValue
  473. pjEdbDataTimeList = append(pjEdbDataTimeList, v)
  474. }
  475. }
  476. }
  477. //新增的数据入库
  478. {
  479. addDataList := make([]*EdbDataPredictCalculateLjztbpj, 0)
  480. //日期排序下
  481. sort.Strings(pjEdbDataTimeList)
  482. //这么做的目的是为了让数据插入的时候,可以正序插入(业务上没啥卵用,就是为了让我看数据的时候舒服点,手动狗头-_-|)
  483. for _, dataTime := range pjEdbDataTimeList {
  484. if dataValue, ok := pjDataMap[dataTime]; ok {
  485. //时间戳
  486. currentDate, _ := time.Parse(utils.FormatDate, dataTime)
  487. timestamp := currentDate.UnixNano() / 1e6
  488. edbDataLjztbpj := &EdbDataPredictCalculateLjztbpj{
  489. EdbInfoId: edbInfo.EdbInfoId,
  490. EdbCode: edbInfo.EdbCode,
  491. DataTime: dataTime,
  492. Value: dataValue,
  493. Status: 1,
  494. CreateTime: time.Now(),
  495. ModifyTime: time.Now(),
  496. DataTimestamp: timestamp,
  497. }
  498. addDataList = append(addDataList, edbDataLjztbpj)
  499. }
  500. }
  501. //数据入库
  502. if len(addDataList) > 0 {
  503. _, tmpErr := to.InsertMulti(len(addDataList), addDataList)
  504. if tmpErr != nil {
  505. err = tmpErr
  506. return
  507. }
  508. }
  509. }
  510. //删除已经不存在的累计同比拼接指标数据(由于同比值当日的数据删除了)
  511. {
  512. if len(removeDateList) > 0 {
  513. removeDateStr := strings.Join(removeDateList, `","`)
  514. removeDateStr = `"` + removeDateStr + `"`
  515. //如果拼接指标变更了,那么需要删除所有的指标数据
  516. tableName := GetEdbDataTableName(edbInfo.Source)
  517. sql := fmt.Sprintf(` DELETE FROM %s WHERE edb_info_id = ? and data_time in (%s) `, tableName, removeDateStr)
  518. _, err = to.Raw(sql, edbInfo.EdbInfoId).Exec()
  519. if err != nil {
  520. err = errors.New("删除不存在的累计值同比拼接指标数据失败,Err:" + err.Error())
  521. return
  522. }
  523. }
  524. }
  525. //修改现有的数据中对应的值
  526. {
  527. tableName := GetEdbDataTableName(edbInfo.Source)
  528. for edbDate, edbDataValue := range updateEdbDataMap {
  529. sql := fmt.Sprintf(` UPDATE %s set value = ?,modify_time=now() WHERE edb_info_id = ? and data_time = ? `, tableName)
  530. _, err = to.Raw(sql, edbDataValue, edbInfo.EdbInfoId, edbDate).Exec()
  531. if err != nil {
  532. err = errors.New("更新现有的累计值同比拼接指标数据失败,Err:" + err.Error())
  533. return
  534. }
  535. }
  536. }
  537. //确定最终值
  538. var finalLast EdbInfoSearchData
  539. sql = ` SELECT data_time , value FROM edb_data_predict_calculate_ljztbpj WHERE edb_info_id=? and data_time<=? ORDER BY data_time DESC `
  540. tmpErr := to.Raw(sql, edbInfo.EdbInfoId, latestDateStr).QueryRow(&finalLast)
  541. if tmpErr != nil {
  542. if tmpErr.Error() != utils.ErrNoRow() {
  543. err = tmpErr
  544. }
  545. return
  546. }else{
  547. latestDateStr = finalLast.DataTime
  548. latestValue = finalLast.Value
  549. }
  550. return
  551. }