predict_edb_data_calculate_ljztbpj.go 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323
  1. package models
  2. import (
  3. "errors"
  4. "eta/eta_index_lib/global"
  5. "eta/eta_index_lib/utils"
  6. "fmt"
  7. "github.com/shopspring/decimal"
  8. "gorm.io/gorm"
  9. "sort"
  10. "strings"
  11. "time"
  12. )
  13. // EdbDataPredictCalculateLjztbpj 累计值同比拼接数据结构体
  14. type EdbDataPredictCalculateLjztbpj struct {
  15. EdbDataId int `gorm:"primaryKey;autoIncrement;column:edb_data_id"`
  16. EdbInfoId int `gorm:"column:edb_info_id" description:"指标ID"`
  17. EdbCode string `gorm:"column:edb_code" description:"指标编码"`
  18. DataTime string `gorm:"column:data_time" description:"数据日期"`
  19. Value float64 `gorm:"column:value" description:"数据值"`
  20. Status int `gorm:"column:status" description:"状态"`
  21. CreateTime time.Time `gorm:"column:create_time" description:"创建时间"`
  22. ModifyTime time.Time `gorm:"column:modify_time" description:"修改时间"`
  23. DataTimestamp int64 `gorm:"column:data_timestamp" description:"数据日期时间戳"`
  24. }
  25. func (e *EdbDataPredictCalculateLjztbpj) AfterFind(db *gorm.DB) (err error) {
  26. e.DataTime = utils.GormDateStrToDateStr(e.DataTime)
  27. return
  28. }
  29. // RefreshAllPredictCalculateLjztbpj 刷新所有 累计值同比拼接 数据
  30. func RefreshAllPredictCalculateLjztbpj(edbInfo *EdbInfo) (latestDateStr string, latestValue float64, err error) {
  31. to := global.DEFAULT_DB.Begin()
  32. defer func() {
  33. if err != nil {
  34. to.Rollback()
  35. } else {
  36. to.Commit()
  37. }
  38. }()
  39. //查询关联指标信息
  40. var existCondition string
  41. var existPars []interface{}
  42. existCondition += " AND edb_info_id=? "
  43. existPars = append(existPars, edbInfo.EdbInfoId)
  44. existList, err := GetEdbInfoCalculateListByCondition(existCondition, existPars)
  45. if err != nil {
  46. err = errors.New("判断指标是否改变失败,Err:" + err.Error())
  47. return
  48. }
  49. var existItemA, existItemB *EdbInfoCalculateMapping
  50. for _, existItem := range existList {
  51. if existItem.FromTag == "A" {
  52. existItemA = existItem
  53. } else if existItem.FromTag == "B" {
  54. existItemB = existItem
  55. }
  56. }
  57. if existItemA == nil {
  58. err = errors.New("原待拼接指标不存在")
  59. return
  60. }
  61. if existItemB == nil {
  62. err = errors.New("原同比值指标不存在")
  63. return
  64. }
  65. fromEdbInfo, err := GetEdbInfoById(existItemA.FromEdbInfoId)
  66. if err != nil {
  67. err = fmt.Errorf("GetEdbInfoById Err:" + err.Error())
  68. return
  69. }
  70. secondEdbInfo, err := GetEdbInfoById(existItemB.FromEdbInfoId)
  71. if err != nil {
  72. err = fmt.Errorf("GetEdbInfoById Err:" + err.Error())
  73. return
  74. }
  75. // 刷新数据
  76. latestDateStr, latestValue, err = refreshAllPredictCalculateLjztbpj(to, edbInfo, fromEdbInfo, secondEdbInfo, existItemB)
  77. return
  78. }
  79. // refreshAllPredictCalculateLjztbpj 刷新所有 累计值同比拼接 数据
  80. func refreshAllPredictCalculateLjztbpj(to *gorm.DB, edbInfo, firstEdbInfo, secondEdbInfo *EdbInfo, existItemB *EdbInfoCalculateMapping) (latestDateStr string, latestValue float64, err error) {
  81. //根据指标id获取全部的数据
  82. var dataList []*EdbDataPredictCalculateLjztbpj
  83. sql := ` SELECT * FROM edb_data_predict_calculate_ljztbpj WHERE edb_info_id=? ORDER BY data_time DESC `
  84. err = to.Raw(sql, edbInfo.EdbInfoId).Find(&dataList).Error
  85. if err != nil {
  86. return
  87. }
  88. latestDateStr = secondEdbInfo.LatestDate
  89. //待拼接指标map
  90. pjDataMap := make(map[string]float64) //需要入库的数据
  91. nowEdbDataMap := make(map[string]float64) //当前指标的数据(已经在库里了,不需要重新)
  92. //拼接指标的日期切片数据
  93. pjEdbDataTimeList := make([]string, 0)
  94. dataMap := make(map[string]*EdbDataPredictCalculateLjztbpj)
  95. for _, v := range dataList {
  96. pjEdbDataTimeList = append(pjEdbDataTimeList, v.DataTime)
  97. dataMap[v.DataTime] = v
  98. nowEdbDataMap[v.DataTime] = v.Value
  99. }
  100. // 原数据开始计算日期
  101. startCalculationDate, _ := time.ParseInLocation(utils.FormatDate, edbInfo.CalculateFormula, time.Local)
  102. //待拼接指标
  103. {
  104. /*var condition string
  105. var pars []interface{}
  106. condition += " AND data_time <= ? AND edb_info_id=? "
  107. pars = append(pars, startCalculationDate, existItemA.FromEdbInfoId)
  108. //第一个指标的数据列表
  109. firstDataList, tmpErr := GetEdbDataListAllByTo(to, condition, pars, existItemA.FromSource, 0)
  110. if tmpErr != nil {
  111. err = tmpErr
  112. return
  113. }*/
  114. var firstDataList []*EdbInfoSearchData
  115. firstDataList, err = GetPredictEdbDataListAllByStartDate(firstEdbInfo, 0, "")
  116. if err != nil {
  117. return
  118. }
  119. for _, v := range firstDataList {
  120. if v.DataTime > startCalculationDate.Format(utils.FormatDate) {
  121. continue
  122. }
  123. //时间戳
  124. if edbData, ok := dataMap[v.DataTime]; ok {
  125. if edbData.Value != v.Value {
  126. //更新指标数据
  127. edbData.Value = v.Value
  128. //_, _ = to.Update(edbData, "Value")
  129. _ = to.Model(edbData).Select([]string{"Value"}).Updates(edbData).Error
  130. }
  131. } else {
  132. pjDataMap[v.DataTime] = v.Value
  133. pjEdbDataTimeList = append(pjEdbDataTimeList, v.DataTime)
  134. }
  135. //将新的数据存入已入库指标map里面,以便后续计算
  136. nowEdbDataMap[v.DataTime] = v.Value
  137. }
  138. }
  139. //同比值指标map
  140. tbzEdbDataMap := make(map[string]float64)
  141. //同比值日期切片列表
  142. tbzEdbDataTimeList := make([]string, 0)
  143. //同比值指标
  144. {
  145. //第二个指标的数据列表
  146. secondDataList, tmpErr := GetEdbDataListAllByTo(to, existItemB.FromSource, existItemB.FromSubSource, FindEdbDataListAllCond{
  147. EdbInfoId: existItemB.FromEdbInfoId,
  148. StartDataTime: startCalculationDate.Format(utils.FormatDate),
  149. StartDataTimeCond: ">",
  150. }, 0)
  151. if tmpErr != nil {
  152. err = tmpErr
  153. return
  154. }
  155. for _, v := range secondDataList {
  156. tbzEdbDataMap[v.DataTime] = v.Value
  157. tbzEdbDataTimeList = append(tbzEdbDataTimeList, v.DataTime)
  158. }
  159. }
  160. sort.Strings(tbzEdbDataTimeList)
  161. // 遍历现有的数据,判断拼接指标中是否存在该日期数据,如果拼接指标无此数据,那么需要删除该日期数据(日期的判断:需要在开始计算日期之后)
  162. removeDateList := make([]string, 0)
  163. for nowEdbDate := range nowEdbDataMap {
  164. nowEdbDateTime, _ := time.ParseInLocation(utils.FormatDate, nowEdbDate, time.Local)
  165. //校验日期 需要 大于 拼接前日期
  166. if startCalculationDate.Before(nowEdbDateTime) {
  167. if _, ok := tbzEdbDataMap[nowEdbDate]; !ok {
  168. // 同比指标中,不存在该日期数据,那么需要移除 现有数据 中该日期的数据
  169. removeDateList = append(removeDateList, nowEdbDate)
  170. }
  171. }
  172. }
  173. //待修改的指标数据map(index:日期,value:值)
  174. updateEdbDataMap := make(map[string]float64)
  175. for _, v := range tbzEdbDataTimeList {
  176. tbzDataTime, _ := time.ParseInLocation(utils.FormatDate, v, time.Local)
  177. //获取拼接指标上一年同一天的数据
  178. var pjDataTime time.Time
  179. if tbzDataTime.Month() == 2 {
  180. pjDataTime = tbzDataTime.AddDate(0, -11, 0)
  181. pjDataTime = time.Date(pjDataTime.Year(), pjDataTime.Month(), 1, 0, 0, 0, 0, time.Now().Location()).AddDate(0, 0, -1)
  182. } else {
  183. pjDataTime = tbzDataTime.AddDate(-1, 0, 0)
  184. }
  185. //校验现有数据中,是否存在该日期的数据,如果存在的话,那么就要去校验 最新计算数据 与 现有数据 是否一致
  186. if nowEdbDataValue, isHas := nowEdbDataMap[v]; isHas {
  187. //获取去年今日的数据,获取到后,然后是去修改该日期的数据
  188. if lastYearEdbDataValue, ok := nowEdbDataMap[pjDataTime.Format(utils.FormatDate)]; ok {
  189. tbzDataValue := tbzEdbDataMap[v] //同比值
  190. currValue := lastYearEdbDataValue * (1 + tbzDataValue/100)
  191. currValue, _ = decimal.NewFromFloat(currValue).Truncate(4).Float64() //保留4位小数
  192. //如果计算出来的值与库里面的值不匹配,那么就去修改该值
  193. if nowEdbDataValue != currValue {
  194. //将计算后的数据存入待拼接指标map里面,以便后续计算
  195. updateEdbDataMap[v] = currValue
  196. }
  197. }
  198. } else {
  199. //因为 现有数据中 不存在该日期数据,那么需要做新增数据处理
  200. //如果去年今日存在该数据,那么就去计算当前的数据
  201. if pjDataValue, ok := nowEdbDataMap[pjDataTime.Format(utils.FormatDate)]; ok {
  202. tbzDataValue := tbzEdbDataMap[v] //同比值
  203. currValue := pjDataValue * (1 + tbzDataValue/100)
  204. currValue, _ = decimal.NewFromFloat(currValue).Truncate(4).Float64()
  205. //将计算后的数据存入已入库指标map里面,以便后续计算
  206. nowEdbDataMap[v] = currValue
  207. //将计算后的数据存入待拼接指标map里面,以便后续入库
  208. pjDataMap[v] = currValue
  209. pjEdbDataTimeList = append(pjEdbDataTimeList, v)
  210. }
  211. }
  212. }
  213. //新增的数据入库
  214. {
  215. addDataList := make([]*EdbDataPredictCalculateLjztbpj, 0)
  216. //日期排序下
  217. sort.Strings(pjEdbDataTimeList)
  218. //这么做的目的是为了让数据插入的时候,可以正序插入(业务上没啥卵用,就是为了让我看数据的时候舒服点,手动狗头-_-|)
  219. for _, dataTime := range pjEdbDataTimeList {
  220. if dataValue, ok := pjDataMap[dataTime]; ok {
  221. //时间戳
  222. currentDate, _ := time.ParseInLocation(utils.FormatDate, dataTime, time.Local)
  223. timestamp := currentDate.UnixNano() / 1e6
  224. edbDataLjztbpj := &EdbDataPredictCalculateLjztbpj{
  225. EdbInfoId: edbInfo.EdbInfoId,
  226. EdbCode: edbInfo.EdbCode,
  227. DataTime: dataTime,
  228. Value: dataValue,
  229. Status: 1,
  230. CreateTime: time.Now(),
  231. ModifyTime: time.Now(),
  232. DataTimestamp: timestamp,
  233. }
  234. addDataList = append(addDataList, edbDataLjztbpj)
  235. }
  236. }
  237. //数据入库
  238. if len(addDataList) > 0 {
  239. tmpErr := to.CreateInBatches(addDataList, utils.MultiAddNum).Error
  240. if tmpErr != nil {
  241. err = tmpErr
  242. return
  243. }
  244. }
  245. }
  246. //删除已经不存在的累计同比拼接指标数据(由于同比值当日的数据删除了)
  247. {
  248. if len(removeDateList) > 0 {
  249. removeDateStr := strings.Join(removeDateList, `','`)
  250. removeDateStr = `'` + removeDateStr + `'`
  251. //如果拼接指标变更了,那么需要删除所有的指标数据
  252. tableName := GetEdbDataTableName(edbInfo.Source, edbInfo.SubSource)
  253. sql := fmt.Sprintf(` DELETE FROM %s WHERE edb_info_id = ? and data_time in (%s) `, tableName, removeDateStr)
  254. err = to.Exec(sql, edbInfo.EdbInfoId).Error
  255. if err != nil {
  256. err = errors.New("删除不存在的累计值同比拼接指标数据失败,Err:" + err.Error())
  257. return
  258. }
  259. }
  260. }
  261. //修改现有的数据中对应的值
  262. {
  263. tableName := GetEdbDataTableName(edbInfo.Source, edbInfo.SubSource)
  264. for edbDate, edbDataValue := range updateEdbDataMap {
  265. sql := fmt.Sprintf(` UPDATE %s set value = ?,modify_time=now() WHERE edb_info_id = ? and data_time = ? `, tableName)
  266. err = to.Exec(sql, edbDataValue, edbInfo.EdbInfoId, edbDate).Error
  267. if err != nil {
  268. err = errors.New("更新现有的累计值同比拼接指标数据失败,Err:" + err.Error())
  269. return
  270. }
  271. }
  272. }
  273. //确定最终值
  274. var finalLast EdbInfoSearchData
  275. sql = ` SELECT data_time , value FROM edb_data_predict_calculate_ljztbpj WHERE edb_info_id=? and data_time<=? ORDER BY data_time DESC `
  276. sql = utils.ReplaceDriverKeywords("", sql)
  277. tmpErr := to.Raw(sql, edbInfo.EdbInfoId, latestDateStr).First(&finalLast).Error
  278. if tmpErr != nil {
  279. if tmpErr.Error() != utils.ErrNoRow() {
  280. err = tmpErr
  281. }
  282. return
  283. } else {
  284. latestDateStr = finalLast.DataTime
  285. latestValue = finalLast.Value
  286. }
  287. return
  288. }