predict_edb.go 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465
  1. package models
  2. import (
  3. "encoding/json"
  4. "errors"
  5. "eta/eta_index_lib/global"
  6. "eta/eta_index_lib/utils"
  7. "fmt"
  8. "github.com/dengsgo/math-engine/engine"
  9. "github.com/shopspring/decimal"
  10. "gorm.io/gorm"
  11. "strings"
  12. "time"
  13. )
  14. // CalculateRule 预测指标 规则 计算
  15. type CalculateRule struct {
  16. EdbInfoId int `description:"指标id"`
  17. ConfigId int `description:"配置id"`
  18. TrendsCalculateMappingList []*PredictEdbConfCalculateMapping `gorm:"-"`
  19. EdbInfoList []*EdbInfo `gorm:"-"`
  20. EdbInfoIdBytes []string
  21. Formula string
  22. RuleType int `description:"预测规则,1:最新,2:固定值,3:同比,4:同差,5:环比,6:环差,7:N期移动均值,8:N期段线性外推值,9:动态环差"`
  23. EndDate string `description:"截止日期"`
  24. EdbInfoIdArr []EdbInfoFromTag `description:"指标信息" gorm:"-"`
  25. EmptyType int `description:"空值处理类型(0查找前后35天,1不计算,2前值填充,3后值填充,4等于0)"`
  26. MaxEmptyType int `description:"MAX、MIN公式空值处理类型(1、等于0;2、跳过空值)"`
  27. }
  28. // AfterFind 在该模型上设置钩子函数,把日期转成正确的string,所以查询函数只能用Find函数,First或者Scan是不会触发该函数的来获取数据
  29. func (m *CalculateRule) AfterFind(db *gorm.DB) (err error) {
  30. m.EndDate = utils.GormDateStrToDateStr(m.EndDate)
  31. return
  32. }
  33. // RefreshCalculateByRuleBy9 刷新计算
  34. func RefreshCalculateByRuleBy9(rule CalculateRule) (resultDataList []*EdbInfoSearchData, err error) {
  35. to := global.DEFAULT_DB.Begin()
  36. defer func() {
  37. if err != nil {
  38. to.Rollback()
  39. } else {
  40. to.Commit()
  41. }
  42. }()
  43. resultDataList, err = CalculateByRuleBy9(to, rule)
  44. return
  45. }
  46. // CalculateByRuleBy9 动态环差规则计算入库
  47. func CalculateByRuleBy9(to *gorm.DB, rule CalculateRule) (resultDataList []*EdbInfoSearchData, err error) {
  48. realSaveDataMap := make(map[string]map[int]float64)
  49. saveDataMap := make(map[string]map[int]float64)
  50. // 最小的结束日期 , 最晚的数据开始日期
  51. var minLatestDate, maxStartDate time.Time
  52. dateList := make([]string, 0) // 第一个指标的日期数据
  53. formulaStr := strings.ToUpper(rule.Formula)
  54. // 获取关联指标数据
  55. for edbInfoIndex, v := range rule.EdbInfoList {
  56. dataList, tmpErr := GetPredictEdbDataListAll(v, 1)
  57. if tmpErr != nil {
  58. err = tmpErr
  59. return
  60. }
  61. //lenData := len(dataList)
  62. for _, dv := range dataList {
  63. // 现有实际数据
  64. if val, ok := realSaveDataMap[dv.DataTime]; ok {
  65. if _, ok := val[v.EdbInfoId]; !ok {
  66. val[v.EdbInfoId] = dv.Value
  67. }
  68. } else {
  69. temp := make(map[int]float64)
  70. temp[v.EdbInfoId] = dv.Value
  71. realSaveDataMap[dv.DataTime] = temp
  72. }
  73. // 待处理的数据
  74. if val, ok := saveDataMap[dv.DataTime]; ok {
  75. if _, ok := val[v.EdbInfoId]; !ok {
  76. val[v.EdbInfoId] = dv.Value
  77. }
  78. } else {
  79. temp := make(map[int]float64)
  80. temp[v.EdbInfoId] = dv.Value
  81. saveDataMap[dv.DataTime] = temp
  82. }
  83. // 以第一个指标的日期作为基准日期
  84. if edbInfoIndex == 0 {
  85. dateList = append(dateList, dv.DataTime)
  86. tmpDate, _ := time.ParseInLocation(utils.FormatDate, dv.DataTime, time.Local)
  87. if minLatestDate.IsZero() || tmpDate.After(minLatestDate) {
  88. minLatestDate = tmpDate
  89. }
  90. if maxStartDate.IsZero() || tmpDate.Before(maxStartDate) {
  91. maxStartDate = tmpDate
  92. }
  93. }
  94. }
  95. /*if lenData > 0 {
  96. tmpLatestDate, _ := time.ParseInLocation(utils.FormatDate, dataList[lenData-1].DataTime, time.Local)
  97. if minLatestDate.IsZero() || minLatestDate.After(tmpLatestDate) {
  98. minLatestDate = tmpLatestDate
  99. }
  100. tmpStartDate, _ := time.ParseInLocation(utils.FormatDate, dataList[0].DataTime, time.Local)
  101. if maxStartDate.IsZero() || maxStartDate.Before(tmpStartDate) {
  102. maxStartDate = tmpStartDate
  103. }
  104. }*/
  105. }
  106. // todo 数据处理,将日期内不全的数据做填补
  107. HandleDateSaveDataMap(dateList, maxStartDate, minLatestDate, realSaveDataMap, saveDataMap, rule.EdbInfoList, rule.EmptyType)
  108. // 添加数据
  109. addDataList := make([]*PredictEdbRuleData, 0)
  110. // 计算规则
  111. formulaDateSlice, formulaDateMap, err := utils.HandleFormulaJson(formulaStr, minLatestDate)
  112. if err != nil {
  113. return
  114. }
  115. //获取指标所有数据
  116. dataList := make([]*PredictEdbRuleData, 0)
  117. sql := `SELECT * FROM predict_edb_rule_data WHERE config_id = ?`
  118. err = to.Raw(sql, rule.ConfigId).Find(&dataList).Error
  119. if err != nil {
  120. return
  121. }
  122. dataMap := make(map[string]*PredictEdbRuleData)
  123. removeDateMap := make(map[string]*PredictEdbRuleData) //需要移除的日期
  124. for _, v := range dataList {
  125. dataMap[v.DataTime] = v
  126. removeDateMap[v.DataTime] = v
  127. }
  128. existDataMap := make(map[string]string)
  129. // 判断是否特殊处理max和min函数
  130. maxDealFlag := false
  131. if rule.EmptyType == 4 && rule.MaxEmptyType == 2 {
  132. maxDealFlag = true
  133. }
  134. for sk, sv := range saveDataMap {
  135. // 当空值处理类型选择了不计算时,只要有一个指标在某个日期没有值(即空值),则计算指标在该日期没有值
  136. if rule.EmptyType == 1 {
  137. if len(sv) != len(rule.EdbInfoList) {
  138. continue
  139. }
  140. }
  141. //fmt.Println(sk, sv)
  142. // 根据时间范围,选择对应的公式
  143. formulaMap := make(map[string]string)
  144. formulaStr = ""
  145. for _, fv := range formulaDateSlice {
  146. if sk < fv {
  147. if f, ok := formulaDateMap[fv]; ok {
  148. formulaStr = f
  149. formulaMap, err = utils.CheckFormula(formulaStr)
  150. if err != nil {
  151. err = fmt.Errorf("公式错误,请重新填写")
  152. return
  153. }
  154. }
  155. break
  156. }
  157. }
  158. if formulaStr == "" {
  159. continue
  160. }
  161. svMax := make(map[int]float64)
  162. if maxDealFlag {
  163. // 特殊处理max和min函数,如果原本的值为空,则选择空值参与运算
  164. if svMaxData, ok := realSaveDataMap[sk]; ok {
  165. svMax = svMaxData
  166. }
  167. }
  168. formulaStr = strings.ToUpper(formulaStr)
  169. //fmt.Println(sk, sv)
  170. formulaFormStr := ReplaceFormula(rule.EdbInfoList, sv, svMax, formulaMap, formulaStr, rule.EdbInfoIdBytes, maxDealFlag)
  171. //计算公式异常,那么就移除该指标
  172. if formulaFormStr == "" {
  173. continue
  174. }
  175. //utils.FileLog.Info(fmt.Sprintf("formulaFormStr:%s", formulaFormStr))
  176. //expression := formula.NewExpression(formulaFormStr)
  177. //calResult, tmpErr := expression.Evaluate()
  178. //if tmpErr != nil {
  179. // // 分母为0的报错
  180. // if strings.Contains(tmpErr.Error(), "divide by zero") {
  181. // continue
  182. // }
  183. // err = errors.New("计算失败:Err:" + tmpErr.Error() + ";formulaStr:" + formulaFormStr)
  184. // //fmt.Println(err)
  185. // return
  186. //}
  187. //calVal, tmpErr := calResult.Float64()
  188. //if tmpErr != nil {
  189. // err = errors.New("计算失败:获取计算值失败 Err:" + tmpErr.Error() + ";formulaStr:" + formulaFormStr)
  190. // //fmt.Println(err)
  191. // return
  192. //}
  193. calVal, err := engine.ParseAndExec(formulaFormStr)
  194. //calVal, err := calResult.Float64()
  195. if err != nil {
  196. // 分母为0的报错,忽略该循环
  197. if utils.IsDivideZero(err) {
  198. //removeDateList = append(removeDateList, sk)
  199. continue
  200. }
  201. err = errors.New("计算失败:获取计算值失败 Err:" + err.Error() + ";formulaStr:" + formulaFormStr)
  202. fmt.Println(err)
  203. return nil, err
  204. }
  205. nanCheck := fmt.Sprintf("%0.f", calVal)
  206. if nanCheck == "NaN" || nanCheck == "+Inf" || nanCheck == "-Inf" {
  207. continue
  208. }
  209. // 移除不存在的日期
  210. delete(removeDateMap, sk)
  211. saveValue := decimal.NewFromFloat(calVal).Round(4).String() //utils.SubFloatToString(calVal, 4)
  212. existPredictEdbRuleData, ok := dataMap[sk]
  213. if !ok {
  214. dataTime, _ := time.ParseInLocation(utils.FormatDate, sk, time.Local)
  215. timestamp := dataTime.UnixNano() / 1e6
  216. if _, existOk := existDataMap[sk]; !existOk {
  217. tmpPredictEdbRuleData := &PredictEdbRuleData{
  218. //PredictEdbRuleDataId: 0,
  219. EdbInfoId: rule.EdbInfoId,
  220. ConfigId: rule.ConfigId,
  221. DataTime: sk,
  222. Value: saveValue,
  223. CreateTime: time.Now(),
  224. ModifyTime: time.Now(),
  225. DataTimestamp: timestamp,
  226. }
  227. addDataList = append(addDataList, tmpPredictEdbRuleData)
  228. }
  229. existDataMap[sk] = sk
  230. } else {
  231. existValDecimal, tmpErr := decimal.NewFromString(existPredictEdbRuleData.Value)
  232. if tmpErr != nil {
  233. err = tmpErr
  234. return nil, tmpErr
  235. }
  236. existStr := existValDecimal.String()
  237. if existStr != saveValue {
  238. existPredictEdbRuleData.Value = saveValue
  239. existPredictEdbRuleData.ModifyTime = time.Now()
  240. err = to.Model(existPredictEdbRuleData).Select([]string{"Value", "ModifyTime"}).Updates(existPredictEdbRuleData).Error
  241. if err != nil {
  242. return nil, err
  243. }
  244. }
  245. }
  246. // 计算出来的结果集
  247. resultDataList = append(resultDataList, &EdbInfoSearchData{
  248. //EdbDataId: 0,
  249. DataTime: sk,
  250. Value: calVal,
  251. })
  252. }
  253. // 添加计算出来的值入库
  254. lenAddDataList := len(addDataList)
  255. if lenAddDataList > 0 {
  256. err = to.CreateInBatches(addDataList, utils.MultiAddNum).Error
  257. if err != nil {
  258. return
  259. }
  260. }
  261. //删除多余的值
  262. lenRemoveDateList := len(removeDateMap)
  263. if lenRemoveDateList > 0 {
  264. removeDateList := make([]string, 0) //需要移除的日期
  265. for date, _ := range removeDateMap {
  266. removeDateList = append(removeDateList, date)
  267. }
  268. //如果拼接指标变更了,那么需要删除所有的指标数据
  269. sql := ` DELETE FROM predict_edb_rule_data WHERE config_id = ? and data_time in (` + utils.GetOrmInReplace(lenRemoveDateList) + `) `
  270. err = to.Exec(sql, rule.ConfigId, removeDateList).Error
  271. if err != nil {
  272. err = fmt.Errorf("删除计算失败的预测规则计算指标数据失败,Err:" + err.Error())
  273. return
  274. }
  275. }
  276. return
  277. }
  278. // RefreshCalculateByRuleByLineNh 刷新动态结果计算(线性拟合)
  279. func RefreshCalculateByRuleByLineNh(predictEdbInfo EdbInfo, predictEdbConfAndDataList []*PredictEdbConfAndData, rule PredictEdbConf) (err error, errMsg string) {
  280. to := global.DEFAULT_DB.Begin()
  281. defer func() {
  282. if err != nil {
  283. to.Rollback()
  284. } else {
  285. to.Commit()
  286. }
  287. }()
  288. err, errMsg = CalculateByRuleByRuleLineNh(to, predictEdbInfo, predictEdbConfAndDataList, rule)
  289. return
  290. }
  291. // CalculateByRuleByRuleLineNh 一元线性拟合规则计算入库
  292. func CalculateByRuleByRuleLineNh(to *gorm.DB, predictEdbInfo EdbInfo, predictEdbConfAndDataList []*PredictEdbConfAndData, rule PredictEdbConf) (err error, errMsg string) {
  293. var secondDataList []*EdbInfoSearchData
  294. predictEdbInfoId := predictEdbInfo.EdbInfoId // 预测指标id
  295. // 规则
  296. var ruleConf RuleLineNhConf
  297. tmpErr := json.Unmarshal([]byte(rule.Value), &ruleConf)
  298. if tmpErr != nil {
  299. errMsg = `季节性配置信息异常`
  300. err = errors.New("季节性配置信息异常:" + tmpErr.Error())
  301. return
  302. }
  303. // 获取自身指标的数据
  304. {
  305. // 来源指标
  306. var sourceEdbInfoItem *EdbInfo
  307. sql := ` SELECT * FROM edb_info WHERE edb_info_id=? `
  308. err = to.Raw(sql, rule.SourceEdbInfoId).First(&sourceEdbInfoItem).Error
  309. if err != nil {
  310. return
  311. }
  312. predictEdbInfo.EdbInfoId = 0
  313. secondDataList, err, _ = GetPredictDataListByPredictEdbConfList(&predictEdbInfo, sourceEdbInfoItem, predictEdbConfAndDataList, 1, ``)
  314. if err != nil {
  315. return
  316. }
  317. }
  318. lenSecondData := len(secondDataList)
  319. if lenSecondData <= 0 {
  320. return
  321. }
  322. newNhccDataMap, err, errMsg := getCalculateNhccData(secondDataList, ruleConf)
  323. if err != nil {
  324. return
  325. }
  326. //将最后计算出来的结果数据处理(新增入库、编辑日期的值、删除日期)
  327. {
  328. // 获取需要预测的日期
  329. startDateStr := secondDataList[lenSecondData-1].DataTime
  330. startDate, _ := time.ParseInLocation(utils.FormatDate, startDateStr, time.Local)
  331. //endDate, _ := time.ParseInLocation(utils.FormatDate, ruleConf.EndDate, time.Local)
  332. endDate := rule.EndDate
  333. // todo 拟合时间配置
  334. dayList := getPredictEdbDayList(startDate, endDate, predictEdbInfo.Frequency, predictEdbInfo.DataDateType, predictEdbInfo.EndDateType, rule.EndNum)
  335. if len(dayList) <= 0 { // 如果未来没有日期的话,那么就退出当前循环,进入下一个循环
  336. return
  337. }
  338. //获取该配置的所有数据
  339. dataList := make([]*PredictEdbRuleData, 0)
  340. sql := `SELECT * FROM predict_edb_rule_data WHERE config_id = ?`
  341. err = to.Raw(sql, rule.ConfigId).Find(&dataList).Error
  342. if err != nil {
  343. return
  344. }
  345. dataMap := make(map[string]*PredictEdbRuleData)
  346. for _, v := range dataList {
  347. dataMap[v.DataTime] = v
  348. }
  349. //需要移除的日期
  350. removeDateList := make([]string, 0)
  351. // 已经操作过的日期
  352. existDataMap := make(map[string]string)
  353. // 添加数据
  354. addDataList := make([]*PredictEdbRuleData, 0)
  355. for _, currentDate := range dayList {
  356. // 动态拟合残差值数据
  357. currentDateStr := currentDate.Format(utils.FormatDate)
  358. val, ok := newNhccDataMap[currentDateStr]
  359. // 找不到数据,那么就移除该日期的数据
  360. if !ok {
  361. removeDateList = append(removeDateList, currentDateStr)
  362. continue
  363. }
  364. saveValue := decimal.NewFromFloat(val).Round(4).String() //utils.SubFloatToString(calVal, 4)
  365. existPredictEdbRuleData, ok := dataMap[currentDateStr]
  366. if !ok {
  367. timestamp := currentDate.UnixNano() / 1e6
  368. if _, existOk := existDataMap[currentDateStr]; !existOk {
  369. tmpPredictEdbRuleData := &PredictEdbRuleData{
  370. //PredictEdbRuleDataId: 0,
  371. EdbInfoId: predictEdbInfoId,
  372. ConfigId: rule.ConfigId,
  373. DataTime: currentDateStr,
  374. Value: saveValue,
  375. CreateTime: time.Now(),
  376. ModifyTime: time.Now(),
  377. DataTimestamp: timestamp,
  378. }
  379. addDataList = append(addDataList, tmpPredictEdbRuleData)
  380. }
  381. existDataMap[currentDateStr] = currentDateStr
  382. } else {
  383. existValDecimal, tmpErr := decimal.NewFromString(existPredictEdbRuleData.Value)
  384. if tmpErr != nil {
  385. err = tmpErr
  386. return
  387. }
  388. existStr := existValDecimal.String()
  389. if existStr != saveValue {
  390. existPredictEdbRuleData.Value = saveValue
  391. existPredictEdbRuleData.ModifyTime = time.Now()
  392. err = to.Model(existPredictEdbRuleData).Select([]string{"Value", "ModifyTime"}).Updates(existPredictEdbRuleData).Error
  393. if err != nil {
  394. return
  395. }
  396. }
  397. }
  398. }
  399. // 添加计算出来的值入库
  400. lenAddDataList := len(addDataList)
  401. if lenAddDataList > 0 {
  402. err = to.CreateInBatches(addDataList, utils.MultiAddNum).Error
  403. if err != nil {
  404. return
  405. }
  406. }
  407. //删除多余的值
  408. lenRemoveDateList := len(removeDateList)
  409. if lenRemoveDateList > 0 {
  410. //如果拼接指标变更了,那么需要删除所有的指标数据
  411. sql := ` DELETE FROM predict_edb_rule_data WHERE config_id = ? and data_time in (` + utils.GetOrmInReplace(lenRemoveDateList) + `) `
  412. err = to.Exec(sql, rule.ConfigId, removeDateList).Error
  413. if err != nil {
  414. err = fmt.Errorf("删除计算失败的预测规则计算指标数据失败,Err:" + err.Error())
  415. return
  416. }
  417. }
  418. }
  419. return
  420. }