|
@@ -12,10 +12,9 @@ import (
|
|
|
)
|
|
|
|
|
|
// GetChartPredictEdbInfoDataListByRule1 根据规则1获取预测数据
|
|
|
-func GetChartPredictEdbInfoDataListByRule1(edbInfoId int, dataValue float64, startDate, endDate time.Time, frequency string, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData) {
|
|
|
+func GetChartPredictEdbInfoDataListByRule1(edbInfoId int, dataValue float64, dayList []time.Time, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData) {
|
|
|
newPredictEdbInfoData = predictEdbInfoData
|
|
|
//获取后面的预测数据
|
|
|
- dayList := getPredictEdbDayList(startDate, endDate, frequency)
|
|
|
predictEdbInfoData = make([]*EdbInfoSearchData, 0)
|
|
|
for k, v := range dayList {
|
|
|
newPredictEdbInfoData = append(newPredictEdbInfoData, &EdbInfoSearchData{
|
|
@@ -31,7 +30,7 @@ func GetChartPredictEdbInfoDataListByRule1(edbInfoId int, dataValue float64, sta
|
|
|
// GetChartPredictEdbInfoDataListByRuleTb 根据同比值规则获取预测数据
|
|
|
// 2.1 同比: 在未来某一个时间段内,给定一个固定的同比增速a,用去年同期值X乘以同比增速(1+a),得到预测值Y=X(1+a)
|
|
|
// 例: 今年1-3月值,100,100,120。给定同比增速a=0.1,则明年1-3月预测值为: 100*1.1=110,100*1.1=110,120*1.1=132。
|
|
|
-func GetChartPredictEdbInfoDataListByRuleTb(edbInfoId int, tbValue float64, startDate, endDate time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
|
|
|
+func GetChartPredictEdbInfoDataListByRuleTb(edbInfoId int, tbValue float64, dayList []time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
|
|
|
allDataList := make([]*EdbInfoSearchData, 0)
|
|
|
allDataList = append(allDataList, realPredictEdbInfoData...)
|
|
|
allDataList = append(allDataList, predictEdbInfoData...)
|
|
@@ -39,7 +38,6 @@ func GetChartPredictEdbInfoDataListByRuleTb(edbInfoId int, tbValue float64, star
|
|
|
|
|
|
index := len(allDataList)
|
|
|
//获取后面的预测数据
|
|
|
- dayList := getPredictEdbDayList(startDate, endDate, frequency)
|
|
|
predictEdbInfoData = make([]*EdbInfoSearchData, 0)
|
|
|
for k, currentDate := range dayList {
|
|
|
|
|
@@ -160,7 +158,7 @@ func PredictTbzDiv(a, b float64) (result float64) {
|
|
|
// GetChartPredictEdbInfoDataListByRuleTc 根据同差值规则获取预测数据
|
|
|
// 2.2 同差: 在未来某一个时间段内,给定一个固定的同比增加值a,用去年同期值X加上同比增加值A,得到预测值Y=X+a
|
|
|
// 例: 今年1-3月值,100,100,120。给定同比增加值a=10,则明年1-3月预测值为: 100+10=110,100+10=110,120+10=130
|
|
|
-func GetChartPredictEdbInfoDataListByRuleTc(edbInfoId int, tcValue float64, startDate, endDate time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
|
|
|
+func GetChartPredictEdbInfoDataListByRuleTc(edbInfoId int, tcValue float64, dayList []time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
|
|
|
allDataList := make([]*EdbInfoSearchData, 0)
|
|
|
allDataList = append(allDataList, realPredictEdbInfoData...)
|
|
|
allDataList = append(allDataList, predictEdbInfoData...)
|
|
@@ -168,7 +166,6 @@ func GetChartPredictEdbInfoDataListByRuleTc(edbInfoId int, tcValue float64, star
|
|
|
|
|
|
index := len(allDataList)
|
|
|
//获取后面的预测数据
|
|
|
- dayList := getPredictEdbDayList(startDate, endDate, frequency)
|
|
|
predictEdbInfoData = make([]*EdbInfoSearchData, 0)
|
|
|
for k, currentDate := range dayList {
|
|
|
|
|
@@ -283,7 +280,7 @@ func PredictTczDiv(a, b float64) (result float64) {
|
|
|
// GetChartPredictEdbInfoDataListByRuleHb 根据环比值规则获取预测数据
|
|
|
// 环比:在未来某一个时间段内,给定一个固定的环比增速a,用上一期值X乘以环比增速(1+a),得到预测值Y=X(1+a)
|
|
|
// 例: 最近1期值为100,给定环比增速a=0.2,则未来3期预测值为: 100*1.2=120,120*1.2=144,144*1.2=172.8
|
|
|
-func GetChartPredictEdbInfoDataListByRuleHb(edbInfoId int, hbValue float64, startDate, endDate time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
|
|
|
+func GetChartPredictEdbInfoDataListByRuleHb(edbInfoId int, hbValue float64, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
|
|
|
allDataList := make([]*EdbInfoSearchData, 0)
|
|
|
allDataList = append(allDataList, realPredictEdbInfoData...)
|
|
|
allDataList = append(allDataList, predictEdbInfoData...)
|
|
@@ -291,7 +288,6 @@ func GetChartPredictEdbInfoDataListByRuleHb(edbInfoId int, hbValue float64, star
|
|
|
|
|
|
index := len(allDataList)
|
|
|
//获取后面的预测数据
|
|
|
- dayList := getPredictEdbDayList(startDate, endDate, frequency)
|
|
|
for k, currentDate := range dayList {
|
|
|
tmpK := index + k - 1 //上1期的值
|
|
|
|
|
@@ -347,7 +343,7 @@ func PredictHbzDiv(a, b float64) (result float64) {
|
|
|
// GetChartPredictEdbInfoDataListByRuleHc 根据环差值规则获取预测数据
|
|
|
// 2.4 环差:在未来某一个时间段内,给定一个固定的环比增加值a,用上一期值X加上环比增加值a,得到预测值Y=X+a
|
|
|
// 例: 最近1期值为100,给定环比增加值a=10,则未来3期预测值为: 100+10=110,110+10=120,120+10=130
|
|
|
-func GetChartPredictEdbInfoDataListByRuleHc(edbInfoId int, hcValue float64, startDate, endDate time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
|
|
|
+func GetChartPredictEdbInfoDataListByRuleHc(edbInfoId int, hcValue float64, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
|
|
|
allDataList := make([]*EdbInfoSearchData, 0)
|
|
|
allDataList = append(allDataList, realPredictEdbInfoData...)
|
|
|
allDataList = append(allDataList, predictEdbInfoData...)
|
|
@@ -355,7 +351,6 @@ func GetChartPredictEdbInfoDataListByRuleHc(edbInfoId int, hcValue float64, star
|
|
|
|
|
|
index := len(allDataList)
|
|
|
//获取后面的预测数据
|
|
|
- dayList := getPredictEdbDayList(startDate, endDate, frequency)
|
|
|
for k, currentDate := range dayList {
|
|
|
tmpK := index + k - 1 //上1期的值
|
|
|
|
|
@@ -405,7 +400,7 @@ func PredictHczDiv(a, b float64) (result float64) {
|
|
|
// GetChartPredictEdbInfoDataListByRuleNMoveMeanValue 根据N期移动均值规则获取预测数据
|
|
|
// 2.5 N期移动均值:在未来某一个时间段内,下一期值等于过去N期值得平均值。
|
|
|
// 例:最近3期值(N=3),为95,98,105则未来第1期值为 1/3*(95+98+105)=99.33, 未来第2期值为 1/3*(98+105+99.33)=100.78依次类推。
|
|
|
-func GetChartPredictEdbInfoDataListByRuleNMoveMeanValue(edbInfoId int, nValue int, startDate, endDate time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
|
|
|
+func GetChartPredictEdbInfoDataListByRuleNMoveMeanValue(edbInfoId int, nValue int, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
|
|
|
allDataList := make([]*EdbInfoSearchData, 0)
|
|
|
allDataList = append(allDataList, realPredictEdbInfoData...)
|
|
|
allDataList = append(allDataList, predictEdbInfoData...)
|
|
@@ -422,7 +417,6 @@ func GetChartPredictEdbInfoDataListByRuleNMoveMeanValue(edbInfoId int, nValue in
|
|
|
decimalN := decimal.NewFromInt(int64(nValue))
|
|
|
|
|
|
//获取后面的预测数据
|
|
|
- dayList := getPredictEdbDayList(startDate, endDate, frequency)
|
|
|
for k, currentDate := range dayList {
|
|
|
tmpIndex := lenAllData + k - 1 //上1期的值
|
|
|
|
|
@@ -463,7 +457,7 @@ func GetChartPredictEdbInfoDataListByRuleNMoveMeanValue(edbInfoId int, nValue in
|
|
|
// 例1:过去5期值(N=5)分别为:3,5,7,9,11(每两期值之间的时间间隔相等)。那么按照线性回归方程推算,未来三期的预测值是:13,15,17。
|
|
|
//
|
|
|
// 例2:过去6期值(N=6)分别为:3,3,5,7,9,11(每两期值之间的时间间隔相等)。那么按照线性回归方程推算,未来三期的预测值是:12.33,14.05,15.76。例1和例2的区别在于,多加了一期数据,导致回归方程发生改变,从而预测值不同。
|
|
|
-func GetChartPredictEdbInfoDataListByRuleNLinearRegression(edbInfoId int, nValue int, startDate, endDate time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
|
|
|
+func GetChartPredictEdbInfoDataListByRuleNLinearRegression(edbInfoId int, nValue int, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
|
|
|
//var errMsg string
|
|
|
//defer func() {
|
|
|
// if errMsg != `` {
|
|
@@ -486,16 +480,16 @@ func GetChartPredictEdbInfoDataListByRuleNLinearRegression(edbInfoId int, nValue
|
|
|
|
|
|
//获取后面的预测数据
|
|
|
// 获取线性方程公式的a、b的值
|
|
|
- coordinateData := make([]Coordinate, 0)
|
|
|
+ coordinateData := make([]utils.Coordinate, 0)
|
|
|
for tmpK := nValue; tmpK > 0; tmpK-- {
|
|
|
tmpIndex2 := lenAllData - tmpK //上N期的值
|
|
|
- tmpCoordinate := Coordinate{
|
|
|
+ tmpCoordinate := utils.Coordinate{
|
|
|
X: float64(nValue - tmpK + 1),
|
|
|
Y: allDataList[tmpIndex2].Value,
|
|
|
}
|
|
|
coordinateData = append(coordinateData, tmpCoordinate)
|
|
|
}
|
|
|
- a, b := getLinearResult(coordinateData)
|
|
|
+ a, b := utils.GetLinearResult(coordinateData)
|
|
|
if math.IsNaN(a) || math.IsNaN(b) {
|
|
|
err = errors.New("线性方程公式生成失败")
|
|
|
return
|
|
@@ -504,7 +498,6 @@ func GetChartPredictEdbInfoDataListByRuleNLinearRegression(edbInfoId int, nValue
|
|
|
|
|
|
aDecimal := decimal.NewFromFloat(a)
|
|
|
bDecimal := decimal.NewFromFloat(b)
|
|
|
- dayList := getPredictEdbDayList(startDate, endDate, frequency)
|
|
|
for k, currentDate := range dayList {
|
|
|
tmpK := nValue + k + 1
|
|
|
|
|
@@ -532,49 +525,6 @@ func GetChartPredictEdbInfoDataListByRuleNLinearRegression(edbInfoId int, nValue
|
|
|
return
|
|
|
}
|
|
|
|
|
|
-// Series is a container for a series of data
|
|
|
-type Series []Coordinate
|
|
|
-
|
|
|
-// Coordinate holds the data in a series
|
|
|
-type Coordinate struct {
|
|
|
- X, Y float64
|
|
|
-}
|
|
|
-
|
|
|
-func getLinearResult(s []Coordinate) (gradient, intercept float64) {
|
|
|
- if len(s) <= 1 {
|
|
|
- return
|
|
|
- }
|
|
|
-
|
|
|
- // Placeholder for the math to be done
|
|
|
- var sum [5]float64
|
|
|
-
|
|
|
- // Loop over data keeping index in place
|
|
|
- i := 0
|
|
|
- for ; i < len(s); i++ {
|
|
|
- sum[0] += s[i].X
|
|
|
- sum[1] += s[i].Y
|
|
|
- sum[2] += s[i].X * s[i].X
|
|
|
- sum[3] += s[i].X * s[i].Y
|
|
|
- sum[4] += s[i].Y * s[i].Y
|
|
|
- }
|
|
|
-
|
|
|
- // Find gradient and intercept
|
|
|
- f := float64(i)
|
|
|
- gradient = (f*sum[3] - sum[0]*sum[1]) / (f*sum[2] - sum[0]*sum[0])
|
|
|
- intercept = (sum[1] / f) - (gradient * sum[0] / f)
|
|
|
-
|
|
|
- //fmt.Println("gradient:", gradient, ";intercept:", intercept)
|
|
|
- // Create the new regression series
|
|
|
- //for j := 0; j < len(s); j++ {
|
|
|
- // regressions = append(regressions, Coordinate{
|
|
|
- // X: s[j].X,
|
|
|
- // Y: s[j].X*gradient + intercept,
|
|
|
- // })
|
|
|
- //}
|
|
|
-
|
|
|
- return
|
|
|
-}
|
|
|
-
|
|
|
// GetChartPredictEdbInfoDataListByRuleTrendsHC 根据动态环比增加值的计算规则获取预测数据
|
|
|
//
|
|
|
// 研究员有对预测指标进行动态环差计算的需求,即预测指标使用环差规则进行预测时,环比增加值不是固定值,而是由几个预测指标计算得出的动态变化的值;
|
|
@@ -588,7 +538,7 @@ func getLinearResult(s []Coordinate) (gradient, intercept float64) {
|
|
|
// 计算公式为B-C;
|
|
|
// 则指标A至2022-10-29的预测值为2022-10-28(100+(240-260)=80)、2022-10-29(80+(300-310)=90);
|
|
|
// 注:动态环比增加值的计算遵从计算指标的计算规则,即用于计算的指标若有部分指标缺少部分日期数据,则这部分日期数据不做计算,为空;若动态环比增加值某一天为空,则往前追溯最近一期有值的环比增加值作为该天的数值参与计算;
|
|
|
-func GetChartPredictEdbInfoDataListByRuleTrendsHC(edbInfoId, configId int, startDate, endDate time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
|
|
|
+func GetChartPredictEdbInfoDataListByRuleTrendsHC(edbInfoId int, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, hcDataMap, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
|
|
|
allDataList := make([]*EdbInfoSearchData, 0)
|
|
|
allDataList = append(allDataList, realPredictEdbInfoData...)
|
|
|
allDataList = append(allDataList, predictEdbInfoData...)
|
|
@@ -599,17 +549,6 @@ func GetChartPredictEdbInfoDataListByRuleTrendsHC(edbInfoId, configId int, start
|
|
|
return
|
|
|
}
|
|
|
|
|
|
- hcDataMap := make(map[string]float64) //规则计算的环差值map
|
|
|
-
|
|
|
- tmpPredictEdbRuleDataList, err := GetPredictEdbRuleDataItemList(edbInfoId, configId, startDate.Format(utils.FormatDate), endDate.Format(utils.FormatDate))
|
|
|
- if err != nil {
|
|
|
- return
|
|
|
- }
|
|
|
- for _, v := range tmpPredictEdbRuleDataList {
|
|
|
- hcDataMap[v.DataTime] = v.Value
|
|
|
- }
|
|
|
-
|
|
|
- dayList := getPredictEdbDayList(startDate, endDate, frequency)
|
|
|
for k, currentDate := range dayList {
|
|
|
// 最近一条数据
|
|
|
tmpLenAllDataList := len(allDataList)
|
|
@@ -658,7 +597,7 @@ func GetChartPredictEdbInfoDataListByRuleTrendsHC(edbInfoId, configId int, start
|
|
|
// 需求说明:
|
|
|
// 1、增加一个预测规则,名为“给定终值后插值”,给定预测截止日期和预测终值,计算最新数据日期至预测截止日期的时间差T,计算最新数据和预测终值的数据差S,数据频率与指标频度有关,日度=1,周度=7,旬度=10,月度=30,季度=90,年度=365,环差值=S/T*频率,预测数值=前一天数值+环差值;
|
|
|
// 2、最新数据值和日期改动后,需重新计算环差值和预测数值;
|
|
|
-func GetChartPredictEdbInfoDataListByRuleFinalValueHc(edbInfoId int, finalValue float64, startDate, endDate time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
|
|
|
+func GetChartPredictEdbInfoDataListByRuleFinalValueHc(edbInfoId int, finalValue float64, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
|
|
|
allDataList := make([]*EdbInfoSearchData, 0)
|
|
|
allDataList = append(allDataList, realPredictEdbInfoData...)
|
|
|
allDataList = append(allDataList, predictEdbInfoData...)
|
|
@@ -666,7 +605,6 @@ func GetChartPredictEdbInfoDataListByRuleFinalValueHc(edbInfoId int, finalValue
|
|
|
|
|
|
index := len(allDataList)
|
|
|
//获取后面的预测日期
|
|
|
- dayList := getPredictEdbDayList(startDate, endDate, frequency)
|
|
|
lenDay := len(dayList)
|
|
|
if lenDay <= 0 {
|
|
|
return
|
|
@@ -744,7 +682,7 @@ type SeasonConf struct {
|
|
|
//
|
|
|
// 计算2023.1.2预测值,求过去N年环差均值=[(300-200)+(220-210)+(260-250)]/3=40
|
|
|
// 则2023.1.2预测值=2023.1.1值+过去N年环差均值
|
|
|
-func GetChartPredictEdbInfoDataListByRuleSeason(edbInfoId int, yearsList []int, calendar string, startDate, endDate time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
|
|
|
+func GetChartPredictEdbInfoDataListByRuleSeason(edbInfoId int, yearsList []int, calendar string, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
|
|
|
allDataList := make([]*EdbInfoSearchData, 0)
|
|
|
allDataList = append(allDataList, realPredictEdbInfoData...)
|
|
|
allDataList = append(allDataList, predictEdbInfoData...)
|
|
@@ -800,7 +738,6 @@ func GetChartPredictEdbInfoDataListByRuleSeason(edbInfoId int, yearsList []int,
|
|
|
|
|
|
index := len(allDataList)
|
|
|
//获取后面的预测日期
|
|
|
- dayList := getPredictEdbDayList(startDate, endDate, frequency)
|
|
|
|
|
|
//获取后面的预测数据
|
|
|
predictEdbInfoData = make([]*EdbInfoSearchData, 0)
|
|
@@ -932,7 +869,7 @@ type MoveAverageConf struct {
|
|
|
// 以此类推...
|
|
|
// 计算2023.1.2预测值,求过去N年环差均值=[(200-200)+(250-210)+(270-250)]/3=16.67
|
|
|
// 则2023.1.2预测值=2023.1.1值+过去N年环差均值
|
|
|
-func GetChartPredictEdbInfoDataListByRuleMoveAverageTb(edbInfoId int, nValue, year int, startDate, endDate time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
|
|
|
+func GetChartPredictEdbInfoDataListByRuleMoveAverageTb(edbInfoId int, nValue, year int, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
|
|
|
allDataList := make([]*EdbInfoSearchData, 0)
|
|
|
allDataList = append(allDataList, realPredictEdbInfoData...)
|
|
|
allDataList = append(allDataList, predictEdbInfoData...)
|
|
@@ -949,7 +886,6 @@ func GetChartPredictEdbInfoDataListByRuleMoveAverageTb(edbInfoId int, nValue, ye
|
|
|
decimalN := decimal.NewFromInt(int64(nValue))
|
|
|
|
|
|
//获取后面的预测数据
|
|
|
- dayList := getPredictEdbDayList(startDate, endDate, frequency)
|
|
|
for k, currentDate := range dayList {
|
|
|
tmpLenAllDataList := len(allDataList)
|
|
|
tmpIndex := tmpLenAllDataList - 1 //上1期数据的下标
|
|
@@ -1061,3 +997,378 @@ func GetChartPredictEdbInfoDataListByRuleMoveAverageTb(edbInfoId int, nValue, ye
|
|
|
}
|
|
|
return
|
|
|
}
|
|
|
+
|
|
|
+// GetChartPredictEdbInfoDataListByRuleTbzscz 根据 同比增速差值 规则获取预测数据
|
|
|
+// 同比增速差值计算方式:
|
|
|
+// 1、首先计算出所选指标实际最新日期值的同比增速:(本期数值-同期数值)÷同期数值*100%
|
|
|
+// 2、根据预测截止日期的同比增速终值、最新日期值的同比增速、与最新日期距离截止日期的期数,计算出到截止日期为止的每一期的同比增速。(等差规则计算每一期的同比增速,结合去年同期值,计算出每一期的同比预测值)。公差=(末项-首项)÷(n-1),an=a1+(n-1)d,(n为正整数,n大于等于2)
|
|
|
+// 3、根据去年同期值和未来每一期的同比增速值,求出同比预测值,同比预测值=同期值*(1+同比增速)
|
|
|
+// 同比增速差值:计算最新数据的同比增速((本期数值-同期数值)÷同期数值*100%),结合同比增速终值与期数,计算每一期同比增速,进而求出同比预测值。
|
|
|
+//
|
|
|
+// 例:如上图所示指标,(1)最新日期值2022-12-31 141175 ,结合同期值,计算同比增速;
|
|
|
+// (2)同比增速终值,若为50%, 预测日期为2023-03-31,则根据(1)中的同比增速值与同比增速终值,计算出中间两期的同比增速;
|
|
|
+// (3)求出每一期的预测同比值,预测同比值=同期值*(1+同比增速)
|
|
|
+func GetChartPredictEdbInfoDataListByRuleTbzscz(edbInfoId int, tbEndValue float64, dayList []time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
|
|
|
+ allDataList := make([]*EdbInfoSearchData, 0)
|
|
|
+ allDataList = append(allDataList, realPredictEdbInfoData...)
|
|
|
+ allDataList = append(allDataList, predictEdbInfoData...)
|
|
|
+ newPredictEdbInfoData = predictEdbInfoData
|
|
|
+
|
|
|
+ index := len(allDataList)
|
|
|
+
|
|
|
+ // 获取近期数据的同比值
|
|
|
+ if index <= 0 {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ lastData := allDataList[index-1]
|
|
|
+ lastDayTime, _ := time.ParseInLocation(utils.FormatDate, lastData.DataTime, time.Local)
|
|
|
+
|
|
|
+ var lastTb decimal.Decimal // 计算最新数据与上一期的数据同比值
|
|
|
+ {
|
|
|
+ //上一年的日期
|
|
|
+ preDate := lastDayTime.AddDate(-1, 0, 0)
|
|
|
+ preDateStr := preDate.Format(utils.FormatDate)
|
|
|
+ if preValue, ok := existMap[preDateStr]; ok { //上一年同期找到
|
|
|
+ lastTb = decimal.NewFromFloat(lastData.Value).Div(decimal.NewFromFloat(preValue))
|
|
|
+ } else {
|
|
|
+ switch frequency {
|
|
|
+ case "月度":
|
|
|
+ //向上和向下,各找一个月
|
|
|
+ nextDateDay := preDate
|
|
|
+ preDateDay := preDate
|
|
|
+ for i := 0; i <= 35; i++ {
|
|
|
+ nextDateDayStr := nextDateDay.Format(utils.FormatDate)
|
|
|
+ if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
|
|
|
+ lastTb = decimal.NewFromFloat(lastData.Value).Div(decimal.NewFromFloat(preValue))
|
|
|
+ break
|
|
|
+ } else {
|
|
|
+ preDateDayStr := preDateDay.Format(utils.FormatDate)
|
|
|
+ if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
|
|
|
+ lastTb = decimal.NewFromFloat(lastData.Value).Div(decimal.NewFromFloat(preValue))
|
|
|
+ break
|
|
|
+ }
|
|
|
+ }
|
|
|
+ nextDateDay = nextDateDay.AddDate(0, 0, 1)
|
|
|
+ preDateDay = preDateDay.AddDate(0, 0, -1)
|
|
|
+ }
|
|
|
+
|
|
|
+ case "季度", "年度":
|
|
|
+ if preValue, ok := existMap[preDateStr]; ok { //上一年同期->下一个月找到
|
|
|
+ lastTb = decimal.NewFromFloat(lastData.Value).Div(decimal.NewFromFloat(preValue))
|
|
|
+ break
|
|
|
+ }
|
|
|
+ default:
|
|
|
+ nextDateDay := preDate
|
|
|
+ preDateDay := preDate
|
|
|
+
|
|
|
+ for i := 0; i < 35; i++ {
|
|
|
+ nextDateDayStr := nextDateDay.Format(utils.FormatDate)
|
|
|
+ if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
|
|
|
+ lastTb = decimal.NewFromFloat(lastData.Value).Div(decimal.NewFromFloat(preValue))
|
|
|
+ break
|
|
|
+ } else {
|
|
|
+ preDateDayStr := preDateDay.Format(utils.FormatDate)
|
|
|
+ if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
|
|
|
+ lastTb = decimal.NewFromFloat(lastData.Value).Div(decimal.NewFromFloat(preValue))
|
|
|
+ break
|
|
|
+ } else {
|
|
|
+ //fmt.Println("pre not find:", preDateStr, "i:", i)
|
|
|
+ }
|
|
|
+ }
|
|
|
+ nextDateDay = nextDateDay.AddDate(0, 0, 1)
|
|
|
+ preDateDay = preDateDay.AddDate(0, 0, -1)
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ //获取后面的预测数据
|
|
|
+ lenDay := len(dayList)
|
|
|
+ tbEndValueDecimal := decimal.NewFromFloat(tbEndValue)
|
|
|
+ avgTbVal := tbEndValueDecimal.Sub(lastTb).Div(decimal.NewFromInt(int64(lenDay)))
|
|
|
+
|
|
|
+ fmt.Println(lastTb.Float64())
|
|
|
+ fmt.Println(decimal.NewFromFloat(tbEndValue).Sub(lastTb))
|
|
|
+ fmt.Println(avgTbVal.Float64())
|
|
|
+
|
|
|
+ predictEdbInfoData = make([]*EdbInfoSearchData, 0)
|
|
|
+ for k, currentDate := range dayList {
|
|
|
+ var tbValue decimal.Decimal
|
|
|
+ if k == lenDay-1 { // 如果是最后的日期了,那么就用终值去计算
|
|
|
+ tbValue = tbEndValueDecimal
|
|
|
+ } else { // 最近数据的同比值 + (平均增值乘以当前期数)
|
|
|
+ tbValue = lastTb.Add(avgTbVal.Mul(decimal.NewFromInt(int64(k + 1))))
|
|
|
+ }
|
|
|
+ tmpData := &EdbInfoSearchData{
|
|
|
+ EdbDataId: edbInfoId + 100000 + index + k,
|
|
|
+ //EdbInfoId: edbInfoId,
|
|
|
+ DataTime: currentDate.Format(utils.FormatDate),
|
|
|
+ //Value: dataValue,
|
|
|
+ //DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
|
|
|
+ }
|
|
|
+
|
|
|
+ var val float64
|
|
|
+ var calculateStatus bool //计算结果
|
|
|
+ //currentItem := existMap[av]
|
|
|
+ //上一年的日期
|
|
|
+ preDate := currentDate.AddDate(-1, 0, 0)
|
|
|
+ preDateStr := preDate.Format(utils.FormatDate)
|
|
|
+ if preValue, ok := existMap[preDateStr]; ok { //上一年同期找到
|
|
|
+ val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).RoundCeil(4).Float64()
|
|
|
+ calculateStatus = true
|
|
|
+ } else {
|
|
|
+ switch frequency {
|
|
|
+ case "月度":
|
|
|
+ //向上和向下,各找一个月
|
|
|
+ nextDateDay := preDate
|
|
|
+ preDateDay := preDate
|
|
|
+ for i := 0; i <= 35; i++ {
|
|
|
+ nextDateDayStr := nextDateDay.Format(utils.FormatDate)
|
|
|
+ if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
|
|
|
+ val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).RoundCeil(4).Float64()
|
|
|
+ calculateStatus = true
|
|
|
+ break
|
|
|
+ } else {
|
|
|
+ preDateDayStr := preDateDay.Format(utils.FormatDate)
|
|
|
+ if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
|
|
|
+ val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).RoundCeil(4).Float64()
|
|
|
+ calculateStatus = true
|
|
|
+ break
|
|
|
+ }
|
|
|
+ }
|
|
|
+ nextDateDay = nextDateDay.AddDate(0, 0, 1)
|
|
|
+ preDateDay = preDateDay.AddDate(0, 0, -1)
|
|
|
+ }
|
|
|
+
|
|
|
+ case "季度", "年度":
|
|
|
+ if preValue, ok := existMap[preDateStr]; ok { //上一年同期->下一个月找到
|
|
|
+ val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).RoundCeil(4).Float64()
|
|
|
+ calculateStatus = true
|
|
|
+ break
|
|
|
+ }
|
|
|
+ default:
|
|
|
+ nextDateDay := preDate
|
|
|
+ preDateDay := preDate
|
|
|
+
|
|
|
+ for i := 0; i < 35; i++ {
|
|
|
+ nextDateDayStr := nextDateDay.Format(utils.FormatDate)
|
|
|
+ if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
|
|
|
+ val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).RoundCeil(4).Float64()
|
|
|
+ calculateStatus = true
|
|
|
+ break
|
|
|
+ } else {
|
|
|
+ preDateDayStr := preDateDay.Format(utils.FormatDate)
|
|
|
+ if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
|
|
|
+ val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).RoundCeil(4).Float64()
|
|
|
+ calculateStatus = true
|
|
|
+ break
|
|
|
+ } else {
|
|
|
+ //fmt.Println("pre not find:", preDateStr, "i:", i)
|
|
|
+ }
|
|
|
+ }
|
|
|
+ nextDateDay = nextDateDay.AddDate(0, 0, 1)
|
|
|
+ preDateDay = preDateDay.AddDate(0, 0, -1)
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if calculateStatus {
|
|
|
+ tmpData.Value = val
|
|
|
+ newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
|
|
|
+ allDataList = append(allDataList, tmpData)
|
|
|
+ existMap[tmpData.DataTime] = val
|
|
|
+
|
|
|
+ // 最大最小值
|
|
|
+ if val < minValue {
|
|
|
+ minValue = val
|
|
|
+ }
|
|
|
+ if val > maxValue {
|
|
|
+ maxValue = val
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// RuleLineNhConf 一元线性拟合规则的配置
|
|
|
+type RuleLineNhConf struct {
|
|
|
+ StartDate string `description:"开始日期"`
|
|
|
+ EndDate string `description:"结束日期"`
|
|
|
+ MoveDay int `description:"移动天数"`
|
|
|
+ EdbInfoId int `description:"指标id"`
|
|
|
+}
|
|
|
+
|
|
|
+// GetChartPredictEdbInfoDataListByRuleLineNh 根据 一元线性拟合 的计算规则获取预测数据
|
|
|
+//
|
|
|
+// 选择被预测的指标B(作为自变量,非预测指标),选择指标A(作为因变量,可以是基础指标和预测指标)
|
|
|
+// 2、选择拟合时间段,起始日期至今或指定时间段,选择至今,在计算时截止到指标B的最新日期
|
|
|
+// 3、设定A领先B时间(天),正整数、负整数、0
|
|
|
+// 4、调用拟合残差的数据预处理和算法,给出拟合方程Y=aX+b的系数a,b
|
|
|
+// 5、指标A代入拟合方程得到拟合预测指标B',拟合预测指标使用指标B的频度,在指标B的实际值后面连接拟合预测指标B'对应日期的预测值
|
|
|
+//
|
|
|
+// 注:选择预测截止日期,若所选日期 ≤ 指标A设置领先后的日期序列,则预测指标日期最新日期有值(在指标B'的有值范围内);若所选日期 > 指标A设置领先后的日期序列,则预测指标只到指标A领先后的日期序列(超出指标B'的有值范围,最多到指标B'的最新值);指标A、B更新后,更新预测指标
|
|
|
+func GetChartPredictEdbInfoDataListByRuleLineNh(edbInfoId int, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, newNhccDataMap, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
|
|
|
+ allDataList := make([]*EdbInfoSearchData, 0)
|
|
|
+ allDataList = append(allDataList, realPredictEdbInfoData...)
|
|
|
+ allDataList = append(allDataList, predictEdbInfoData...)
|
|
|
+ newPredictEdbInfoData = predictEdbInfoData
|
|
|
+
|
|
|
+ lenAllData := len(allDataList)
|
|
|
+ if lenAllData <= 0 {
|
|
|
+ return
|
|
|
+ }
|
|
|
+
|
|
|
+ for k, currentDate := range dayList {
|
|
|
+ // 动态拟合残差值数据
|
|
|
+ currentDateStr := currentDate.Format(utils.FormatDate)
|
|
|
+ val, ok := newNhccDataMap[currentDateStr]
|
|
|
+ if !ok {
|
|
|
+ continue
|
|
|
+ }
|
|
|
+ tmpData := &EdbInfoSearchData{
|
|
|
+ EdbDataId: edbInfoId + 100000 + lenAllData + k,
|
|
|
+ //EdbInfoId: edbInfoId,
|
|
|
+ DataTime: currentDateStr,
|
|
|
+ Value: val,
|
|
|
+ //DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
|
|
|
+ }
|
|
|
+ newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
|
|
|
+ allDataList = append(allDataList, tmpData)
|
|
|
+ existMap[currentDateStr] = val
|
|
|
+
|
|
|
+ // 最大最小值
|
|
|
+ if val < minValue {
|
|
|
+ minValue = val
|
|
|
+ }
|
|
|
+ if val > maxValue {
|
|
|
+ maxValue = val
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return
|
|
|
+}
|
|
|
+
|
|
|
+// getCalculateNhccData 获取计算出来的 拟合残差 数据
|
|
|
+func getCalculateNhccData(secondDataList []*EdbInfoSearchData, ruleConf RuleLineNhConf) (newBDataMap map[string]float64, err error) {
|
|
|
+ firstEdbInfoId := ruleConf.EdbInfoId
|
|
|
+ moveDay := ruleConf.MoveDay
|
|
|
+ startDate, _ := time.ParseInLocation(utils.FormatDate, ruleConf.StartDate, time.Local)
|
|
|
+ endDate, _ := time.ParseInLocation(utils.FormatDate, ruleConf.EndDate, time.Local)
|
|
|
+
|
|
|
+ //查询当前指标现有的数据
|
|
|
+ edbInfo, err := GetEdbInfoById(firstEdbInfoId)
|
|
|
+ if err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+
|
|
|
+ //第一个指标
|
|
|
+ aDataList := make([]EdbInfoSearchData, 0)
|
|
|
+ aDataMap := make(map[string]float64)
|
|
|
+ {
|
|
|
+ //第一个指标的数据列表
|
|
|
+ var firstDataList []*EdbInfoSearchData
|
|
|
+ switch edbInfo.EdbInfoType {
|
|
|
+ case 0:
|
|
|
+ var condition string
|
|
|
+ var pars []interface{}
|
|
|
+ condition += " AND edb_info_id=? "
|
|
|
+ pars = append(pars, edbInfo.EdbInfoId)
|
|
|
+
|
|
|
+ //获取来源指标的数据
|
|
|
+ firstDataList, err = GetEdbDataListAll(condition, pars, edbInfo.Source, 1)
|
|
|
+ case 1:
|
|
|
+ firstDataList, err = GetPredictEdbDataListAllByStartDate(edbInfo, 1, "")
|
|
|
+ default:
|
|
|
+ err = errors.New(fmt.Sprint("获取失败,指标类型异常", edbInfo.EdbInfoType))
|
|
|
+ }
|
|
|
+ if err != nil {
|
|
|
+ return
|
|
|
+ }
|
|
|
+ aDataList, aDataMap = handleNhccData(firstDataList, moveDay)
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ //第二个指标
|
|
|
+ bDataList := make([]EdbInfoSearchData, 0)
|
|
|
+ bDataMap := make(map[string]float64)
|
|
|
+ {
|
|
|
+ bDataList, bDataMap = handleNhccData(secondDataList, 0)
|
|
|
+ }
|
|
|
+
|
|
|
+ if len(aDataList) <= 0 {
|
|
|
+ err = errors.New("指标A没有数据")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ if len(bDataList) <= 0 {
|
|
|
+ err = errors.New("指标B没有数据")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ // 拟合残差计算的结束日期判断
|
|
|
+ {
|
|
|
+ endAData := aDataList[len(aDataList)-1]
|
|
|
+ tmpEndDate, tmpErr := time.ParseInLocation(utils.FormatDate, endAData.DataTime, time.Local)
|
|
|
+ if tmpErr != nil {
|
|
|
+ err = tmpErr
|
|
|
+ return
|
|
|
+ }
|
|
|
+ // 如果A指标的最新数据日期早于拟合残差的结束日期,那么就用A指标的最新数据日期
|
|
|
+ if tmpEndDate.Before(endDate) {
|
|
|
+ endDate = tmpEndDate
|
|
|
+ }
|
|
|
+ endBData := bDataList[len(bDataList)-1]
|
|
|
+ tmpEndDate, tmpErr = time.ParseInLocation(utils.FormatDate, endBData.DataTime, time.Local)
|
|
|
+ if tmpErr != nil {
|
|
|
+ err = tmpErr
|
|
|
+ return
|
|
|
+ }
|
|
|
+ // 如果B指标的最新数据日期早于拟合残差的结束日期,那么就用A指标的最新数据日期
|
|
|
+ if tmpEndDate.Before(endDate) {
|
|
|
+ endDate = tmpEndDate
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // 计算线性方程公式
|
|
|
+ var a, b float64
|
|
|
+ {
|
|
|
+ coordinateData := make([]utils.Coordinate, 0)
|
|
|
+ for i := startDate; i.Before(endDate) || i.Equal(endDate); i = i.AddDate(0, 0, 1) {
|
|
|
+ dateStr := i.Format(utils.FormatDate)
|
|
|
+ xValue, ok := aDataMap[dateStr]
|
|
|
+ if !ok {
|
|
|
+ err = errors.New("指标A日期:" + dateStr + "数据异常,导致计算线性方程公式失败")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ yValue, ok := bDataMap[dateStr]
|
|
|
+ if !ok {
|
|
|
+ err = errors.New("指标B日期:" + dateStr + "数据异常,导致计算线性方程公式失败")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ tmpCoordinate := utils.Coordinate{
|
|
|
+ X: xValue,
|
|
|
+ Y: yValue,
|
|
|
+ }
|
|
|
+ coordinateData = append(coordinateData, tmpCoordinate)
|
|
|
+ }
|
|
|
+ a, b = utils.GetLinearResult(coordinateData)
|
|
|
+ }
|
|
|
+
|
|
|
+ if math.IsNaN(a) || math.IsNaN(b) {
|
|
|
+ err = errors.New("线性方程公式生成失败")
|
|
|
+ return
|
|
|
+ }
|
|
|
+ //fmt.Println("a:", a, ";======b:", b)
|
|
|
+
|
|
|
+ //计算B’
|
|
|
+ newBDataMap = make(map[string]float64)
|
|
|
+ {
|
|
|
+ //B’=aA+b
|
|
|
+ aDecimal := decimal.NewFromFloat(a)
|
|
|
+ bDecimal := decimal.NewFromFloat(b)
|
|
|
+ for _, aData := range aDataList {
|
|
|
+ xDecimal := decimal.NewFromFloat(aData.Value)
|
|
|
+ val, _ := aDecimal.Mul(xDecimal).Add(bDecimal).RoundCeil(4).Float64()
|
|
|
+ newBDataMap[aData.DataTime] = val
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+ return
|
|
|
+}
|