|
@@ -1,8 +1,10 @@
|
|
|
package models
|
|
|
|
|
|
import (
|
|
|
+ "errors"
|
|
|
"github.com/shopspring/decimal"
|
|
|
"hongze/hongze_edb_lib/utils"
|
|
|
+ "math"
|
|
|
"time"
|
|
|
)
|
|
|
|
|
@@ -458,7 +460,7 @@ func GetChartPredictEdbInfoDataListByRuleNMoveMeanValue(edbInfoId int, nValue in
|
|
|
// 例1:过去5期值(N=5)分别为:3,5,7,9,11(每两期值之间的时间间隔相等)。那么按照线性回归方程推算,未来三期的预测值是:13,15,17。
|
|
|
//
|
|
|
// 例2:过去6期值(N=6)分别为:3,3,5,7,9,11(每两期值之间的时间间隔相等)。那么按照线性回归方程推算,未来三期的预测值是:12.33,14.05,15.76。例1和例2的区别在于,多加了一期数据,导致回归方程发生改变,从而预测值不同。
|
|
|
-func GetChartPredictEdbInfoDataListByRuleNLinearRegression(edbInfoId int, nValue int, startDate, endDate time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
|
|
|
+func GetChartPredictEdbInfoDataListByRuleNLinearRegression(edbInfoId int, nValue int, startDate, endDate time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
|
|
|
//var errMsg string
|
|
|
//defer func() {
|
|
|
// if errMsg != `` {
|
|
@@ -491,6 +493,10 @@ func GetChartPredictEdbInfoDataListByRuleNLinearRegression(edbInfoId int, nValue
|
|
|
coordinateData = append(coordinateData, tmpCoordinate)
|
|
|
}
|
|
|
a, b := getLinearResult(coordinateData)
|
|
|
+ if math.IsNaN(a) || math.IsNaN(b) {
|
|
|
+ err = errors.New("线性方程公式生成失败")
|
|
|
+ return
|
|
|
+ }
|
|
|
//fmt.Println("a:", a, ";======b:", b)
|
|
|
|
|
|
aDecimal := decimal.NewFromFloat(a)
|