predict_edb_info.go 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429
  1. package data
  2. import (
  3. "encoding/json"
  4. "errors"
  5. "github.com/shopspring/decimal"
  6. "hongze/hongze_chart_lib/models"
  7. "hongze/hongze_chart_lib/models/data_manage"
  8. "hongze/hongze_chart_lib/utils"
  9. "strconv"
  10. "time"
  11. )
  12. // GetChartPredictEdbInfoDataList 获取图表的预测指标的未来数据
  13. func GetChartPredictEdbInfoDataList(predictEdbConf data_manage.PredictEdbConf, filtrateStartDateStr, latestDateStr string, lastDataValue float64, endDateStr, frequency string) (predictEdbInfoData []*models.EdbDataList, err error) {
  14. endDate, err := time.ParseInLocation(utils.FormatDate, endDateStr, time.Local)
  15. if err != nil {
  16. return
  17. }
  18. latestDate, err := time.ParseInLocation(utils.FormatDate, latestDateStr, time.Local)
  19. if err != nil {
  20. return
  21. }
  22. // 开始预测数据的时间
  23. startDate := latestDate
  24. // 如果有筛选时间的话
  25. if filtrateStartDateStr != `` {
  26. filtrateStartDate, tmpErr := time.ParseInLocation(utils.FormatDate, filtrateStartDateStr, time.Local)
  27. if tmpErr != nil {
  28. err = tmpErr
  29. return
  30. }
  31. //如果筛选时间晚于实际数据时间,那么就以筛选时间作为获取预测数据的时间
  32. if filtrateStartDate.After(latestDate) {
  33. startDate = filtrateStartDate.AddDate(0, 0, -1)
  34. }
  35. }
  36. dataValue := lastDataValue
  37. if predictEdbConf.RuleType == 2 {
  38. dataValue = predictEdbConf.FixedValue
  39. }
  40. //获取后面的预测数据
  41. dayList := getPredictEdbDayList(startDate, endDate, frequency)
  42. predictEdbInfoData = make([]*models.EdbDataList, 0)
  43. for k, v := range dayList {
  44. predictEdbInfoData = append(predictEdbInfoData, &models.EdbDataList{
  45. EdbDataId: predictEdbConf.PredictEdbInfoId + 10000000000 + k,
  46. EdbInfoId: predictEdbConf.PredictEdbInfoId,
  47. DataTime: v.Format(utils.FormatDate),
  48. Value: dataValue,
  49. DataTimestamp: (v.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  50. })
  51. }
  52. return
  53. }
  54. // GetPredictEdbDayList 获取预测指标日期列表
  55. func getPredictEdbDayList(startDate, endDate time.Time, frequency string) (dayList []time.Time) {
  56. //if !utils.InArrayByStr([]string{"日度", "周度", "月度"}, frequency)
  57. switch frequency {
  58. case "日度":
  59. for currDate := startDate.AddDate(0, 0, 1); currDate.Before(endDate) || currDate.Equal(endDate); currDate = currDate.AddDate(0, 0, 1) {
  60. //周六、日排除
  61. if currDate.Weekday() == time.Sunday || currDate.Weekday() == time.Saturday {
  62. continue
  63. }
  64. dayList = append(dayList, currDate)
  65. }
  66. case "周度":
  67. //nextDate := startDate.AddDate(0, 0, 7)
  68. for currDate := startDate.AddDate(0, 0, 7); currDate.Before(endDate) || currDate.Equal(endDate); currDate = currDate.AddDate(0, 0, 7) {
  69. dayList = append(dayList, currDate)
  70. }
  71. case "月度":
  72. for currDate := startDate; currDate.Before(endDate) || currDate.Equal(endDate); {
  73. currDate = time.Date(currDate.Year(), currDate.Month(), 1, 0, 0, 0, 0, time.Now().Location()).AddDate(0, 1, -1)
  74. if !currDate.After(endDate) && !currDate.Equal(startDate) {
  75. dayList = append(dayList, currDate)
  76. }
  77. currDate = currDate.AddDate(0, 0, 1)
  78. }
  79. case "年度":
  80. for currDate := startDate; currDate.Before(endDate) || currDate.Equal(endDate); {
  81. currDate = time.Date(currDate.Year()+1, 12, 31, 0, 0, 0, 0, time.Now().Location())
  82. if !currDate.After(endDate) && !currDate.Equal(startDate) {
  83. dayList = append(dayList, currDate)
  84. }
  85. }
  86. }
  87. return
  88. }
  89. // GetPredictDataListByPredictEdbInfoId 根据预测指标id获取预测指标的数据
  90. func GetPredictDataListByPredictEdbInfoId(edbInfoId int, startDate, endDate string, isTimeBetween bool) (edbInfo *data_manage.EdbInfo, dataList []*models.EdbDataList, sourceEdbInfoItem *data_manage.EdbInfo, predictEdbConf *data_manage.PredictEdbConf, err error, errMsg string) {
  91. edbInfo, err = data_manage.GetEdbInfoById(edbInfoId)
  92. if err != nil {
  93. errMsg = `获取预测指标信息失败`
  94. return
  95. }
  96. dataList, sourceEdbInfoItem, predictEdbConf, err, errMsg = GetPredictDataListByPredictEdbInfo(edbInfo, startDate, endDate, isTimeBetween)
  97. return
  98. }
  99. // GetPredictDataListByPredictEdbInfo 根据预测指标信息获取预测指标的数据
  100. func GetPredictDataListByPredictEdbInfo(edbInfo *data_manage.EdbInfo, startDate, endDate string, isTimeBetween bool) (dataList []*models.EdbDataList, sourceEdbInfoItem *data_manage.EdbInfo, predictEdbConf *data_manage.PredictEdbConf, err error, errMsg string) {
  101. // 非计算指标,直接从表里获取数据
  102. if edbInfo.EdbType != 1 {
  103. if !isTimeBetween {
  104. endDate = ``
  105. }
  106. return GetPredictCalculateDataListByPredictEdbInfo(edbInfo, startDate, endDate)
  107. }
  108. // 查找该预测指标配置
  109. predictEdbConfList, err := data_manage.GetPredictEdbConfListById(edbInfo.EdbInfoId)
  110. if err != nil && err.Error() != utils.ErrNoRow() {
  111. errMsg = "获取预测指标配置信息失败"
  112. return
  113. }
  114. if len(predictEdbConfList) == 0 {
  115. errMsg = "获取预测指标配置信息失败"
  116. err = errors.New(errMsg)
  117. return
  118. }
  119. predictEdbConf = predictEdbConfList[0]
  120. if predictEdbConf == nil {
  121. errMsg = "获取预测指标配置信息失败"
  122. err = errors.New(errMsg)
  123. return
  124. }
  125. // 来源指标
  126. sourceEdbInfoItem, err = data_manage.GetEdbInfoById(predictEdbConf.SourceEdbInfoId)
  127. if err != nil {
  128. if err.Error() == utils.ErrNoRow() {
  129. errMsg = "找不到来源指标信息"
  130. err = errors.New(errMsg)
  131. }
  132. return
  133. }
  134. // 所有数据
  135. allDataList := make([]*models.EdbDataList, 0)
  136. //获取指标数据(实际已生成)
  137. dataList, err = models.GetEdbDataList(sourceEdbInfoItem.Source, sourceEdbInfoItem.EdbInfoId, startDate, endDate)
  138. if err != nil {
  139. return
  140. }
  141. // 如果选择了日期,那么需要筛选所有的数据,用于未来指标的生成
  142. if startDate != `` {
  143. allDataList, err = models.GetEdbDataList(sourceEdbInfoItem.Source, sourceEdbInfoItem.EdbInfoId, "", "")
  144. if err != nil {
  145. return
  146. }
  147. } else {
  148. allDataList = dataList
  149. }
  150. // 获取预测指标未来的数据
  151. predictDataList := make([]*models.EdbDataList, 0)
  152. endDateStr := edbInfo.EndDate //预测指标的结束日期
  153. if isTimeBetween { //如果是时间区间,那么
  154. reqEndDateTime, _ := time.ParseInLocation(utils.FormatDate, endDate, time.Local)
  155. endDateTime, _ := time.ParseInLocation(utils.FormatDate, edbInfo.EndDate, time.Local)
  156. // 如果选择的时间区间结束日期 晚于 当天,那么预测数据截止到当天
  157. if reqEndDateTime.Before(endDateTime) {
  158. endDateStr = endDate
  159. }
  160. }
  161. //predictDataList, err = GetChartPredictEdbInfoDataList(*predictEdbConf, startDate, sourceEdbInfoItem.LatestDate, sourceEdbInfoItem.LatestValue, endDateStr, edbInfo.Frequency)
  162. var predictMinValue, predictMaxValue float64
  163. predictDataList, predictMinValue, predictMaxValue, err = GetChartPredictEdbInfoDataListByConfList(predictEdbConfList, startDate, sourceEdbInfoItem.LatestDate, endDateStr, edbInfo.Frequency, allDataList)
  164. if err != nil {
  165. return
  166. }
  167. dataList = append(dataList, predictDataList...)
  168. if len(predictDataList) > 0 {
  169. // 如果最小值 大于 预测值,那么将预测值作为最小值数据返回
  170. if edbInfo.MinValue > predictMinValue {
  171. edbInfo.MinValue = predictMinValue
  172. }
  173. // 如果最大值 小于 预测值,那么将预测值作为最大值数据返回
  174. if edbInfo.MaxValue < predictMaxValue {
  175. edbInfo.MaxValue = predictMaxValue
  176. }
  177. }
  178. return
  179. }
  180. // GetPredictCalculateDataListByPredictEdbInfo 根据预测运算指标信息获取预测指标的数据
  181. func GetPredictCalculateDataListByPredictEdbInfo(edbInfo *data_manage.EdbInfo, startDate, endDate string) (dataList []*models.EdbDataList, sourceEdbInfoItem *data_manage.EdbInfo, predictEdbConf *data_manage.PredictEdbConf, err error, errMsg string) {
  182. dataList, err = models.GetEdbDataList(edbInfo.Source, edbInfo.EdbInfoId, startDate, endDate)
  183. return
  184. }
  185. // GetChartPredictEdbInfoDataListByConfList 获取图表的预测指标的未来数据
  186. func GetChartPredictEdbInfoDataListByConfList(predictEdbConfList []*data_manage.PredictEdbConf, filtrateStartDateStr, latestDateStr, endDateStr, frequency string, realPredictEdbInfoData []*models.EdbDataList) (predictEdbInfoData []*models.EdbDataList, minValue, maxValue float64, err error) {
  187. endDate, err := time.ParseInLocation(utils.FormatDate, endDateStr, time.Local)
  188. if err != nil {
  189. return
  190. }
  191. latestDate, err := time.ParseInLocation(utils.FormatDate, latestDateStr, time.Local)
  192. if err != nil {
  193. return
  194. }
  195. // 开始预测数据的时间
  196. startDate := latestDate
  197. // 如果有筛选时间的话
  198. if filtrateStartDateStr != `` {
  199. filtrateStartDate, tmpErr := time.ParseInLocation(utils.FormatDate, filtrateStartDateStr, time.Local)
  200. if tmpErr != nil {
  201. err = tmpErr
  202. return
  203. }
  204. //如果筛选时间晚于实际数据时间,那么就以筛选时间作为获取预测数据的时间
  205. if filtrateStartDate.After(latestDate) {
  206. startDate = filtrateStartDate.AddDate(0, 0, -1)
  207. }
  208. }
  209. //var dateArr []string
  210. // 对应日期的值
  211. existMap := make(map[string]float64)
  212. for _, v := range realPredictEdbInfoData {
  213. //dateArr = append(dateArr, v.DataTime)
  214. existMap[v.DataTime] = v.Value
  215. }
  216. predictEdbInfoData = make([]*models.EdbDataList, 0)
  217. //dataValue := lastDataValue
  218. //预测规则,1:最新,2:固定值,3:同比,4:同差,5:环比,6:环差,7:N期移动均值,8:N期段线性外推值
  219. for _, predictEdbConf := range predictEdbConfList {
  220. dataEndTime := endDate
  221. if predictEdbConf.EndDate.Before(dataEndTime) {
  222. dataEndTime = predictEdbConf.EndDate
  223. }
  224. var tmpMinValue, tmpMaxValue float64 // 当前预测结果中的最大/最小值
  225. dayList := getPredictEdbDayList(startDate, dataEndTime, frequency)
  226. if len(dayList) <= 0 { // 如果未来没有日期的话,那么就退出当前循环,进入下一个循环
  227. continue
  228. }
  229. switch predictEdbConf.RuleType {
  230. case 1: //1:最新
  231. var lastDataValue float64 //最新值
  232. tmpAllData := make([]*models.EdbDataList, 0)
  233. tmpAllData = append(tmpAllData, realPredictEdbInfoData...)
  234. tmpAllData = append(tmpAllData, predictEdbInfoData...)
  235. lenTmpAllData := len(tmpAllData)
  236. if lenTmpAllData > 0 {
  237. lastDataValue = tmpAllData[lenTmpAllData-1].Value
  238. }
  239. predictEdbInfoData = GetChartPredictEdbInfoDataListByRule1(predictEdbConf.PredictEdbInfoId, lastDataValue, startDate, dataEndTime, frequency, predictEdbInfoData, existMap)
  240. tmpMaxValue = lastDataValue
  241. tmpMinValue = lastDataValue
  242. case 2: //2:固定值
  243. tmpValDecimal, tmpErr := decimal.NewFromString(predictEdbConf.Value)
  244. if tmpErr != nil {
  245. err = tmpErr
  246. return
  247. }
  248. dataValue, _ := tmpValDecimal.Float64()
  249. predictEdbInfoData = GetChartPredictEdbInfoDataListByRule1(predictEdbConf.PredictEdbInfoId, dataValue, startDate, dataEndTime, frequency, predictEdbInfoData, existMap)
  250. tmpMaxValue = dataValue
  251. tmpMinValue = dataValue
  252. case 3: //3:同比
  253. tmpValDecimal, tmpErr := decimal.NewFromString(predictEdbConf.Value)
  254. if tmpErr != nil {
  255. err = tmpErr
  256. return
  257. }
  258. tbValue, _ := tmpValDecimal.Float64()
  259. predictEdbInfoData, tmpMinValue, tmpMaxValue = GetChartPredictEdbInfoDataListByRuleTb(predictEdbConf.PredictEdbInfoId, tbValue, startDate, dataEndTime, frequency, realPredictEdbInfoData, predictEdbInfoData, existMap)
  260. case 4: //4:同差
  261. tmpValDecimal, tmpErr := decimal.NewFromString(predictEdbConf.Value)
  262. if tmpErr != nil {
  263. err = tmpErr
  264. return
  265. }
  266. tcValue, _ := tmpValDecimal.Float64()
  267. predictEdbInfoData, tmpMinValue, tmpMaxValue = GetChartPredictEdbInfoDataListByRuleTc(predictEdbConf.PredictEdbInfoId, tcValue, startDate, dataEndTime, frequency, realPredictEdbInfoData, predictEdbInfoData, existMap)
  268. case 5: //5:环比
  269. tmpValDecimal, tmpErr := decimal.NewFromString(predictEdbConf.Value)
  270. if tmpErr != nil {
  271. err = tmpErr
  272. return
  273. }
  274. hbValue, _ := tmpValDecimal.Float64()
  275. predictEdbInfoData, tmpMinValue, tmpMaxValue = GetChartPredictEdbInfoDataListByRuleHb(predictEdbConf.PredictEdbInfoId, hbValue, startDate, dataEndTime, frequency, realPredictEdbInfoData, predictEdbInfoData, existMap)
  276. case 6: //6:环差
  277. tmpValDecimal, tmpErr := decimal.NewFromString(predictEdbConf.Value)
  278. if tmpErr != nil {
  279. err = tmpErr
  280. return
  281. }
  282. hcValue, _ := tmpValDecimal.Float64()
  283. predictEdbInfoData, tmpMinValue, tmpMaxValue = GetChartPredictEdbInfoDataListByRuleHc(predictEdbConf.PredictEdbInfoId, hcValue, startDate, dataEndTime, frequency, realPredictEdbInfoData, predictEdbInfoData, existMap)
  284. case 7: //7:N期移动均值
  285. nValue, tmpErr := strconv.Atoi(predictEdbConf.Value)
  286. if tmpErr != nil {
  287. err = tmpErr
  288. return
  289. }
  290. predictEdbInfoData, tmpMinValue, tmpMaxValue = GetChartPredictEdbInfoDataListByRuleNMoveMeanValue(predictEdbConf.PredictEdbInfoId, nValue, startDate, dataEndTime, frequency, realPredictEdbInfoData, predictEdbInfoData, existMap)
  291. case 8: //8:N期段线性外推值
  292. nValue, tmpErr := strconv.Atoi(predictEdbConf.Value)
  293. if tmpErr != nil {
  294. err = tmpErr
  295. return
  296. }
  297. predictEdbInfoData, tmpMinValue, tmpMaxValue = GetChartPredictEdbInfoDataListByRuleNLinearRegression(predictEdbConf.PredictEdbInfoId, nValue, startDate, dataEndTime, frequency, realPredictEdbInfoData, predictEdbInfoData, existMap)
  298. case 9: //9:动态环差”预测规则;
  299. predictEdbInfoData, tmpMinValue, tmpMaxValue = GetChartPredictEdbInfoDataListByRuleTrendsHC(predictEdbConf.PredictEdbInfoId, predictEdbConf.ConfigId, startDate, dataEndTime, frequency, realPredictEdbInfoData, predictEdbInfoData, existMap)
  300. case 10: //10:根据 给定终值后插值 规则获取预测数据
  301. tmpValDecimal, tmpErr := decimal.NewFromString(predictEdbConf.Value)
  302. if tmpErr != nil {
  303. err = tmpErr
  304. return
  305. }
  306. finalValue, _ := tmpValDecimal.Float64()
  307. predictEdbInfoData, tmpMinValue, tmpMaxValue = GetChartPredictEdbInfoDataListByRuleFinalValueHc(predictEdbConf.PredictEdbInfoId, finalValue, startDate, dataEndTime, frequency, realPredictEdbInfoData, predictEdbInfoData, existMap)
  308. case 11: //11:根据 季节性 规则获取预测数据
  309. var seasonConf SeasonConf
  310. tmpErr := json.Unmarshal([]byte(predictEdbConf.Value), &seasonConf)
  311. if tmpErr != nil {
  312. err = errors.New("季节性配置信息异常:" + tmpErr.Error())
  313. return
  314. }
  315. calendar := "公历"
  316. if seasonConf.Calendar == "农历" {
  317. calendar = "农历"
  318. }
  319. yearList := make([]int, 0)
  320. //选择方式,1:连续N年;2:指定年份
  321. if seasonConf.YearType == 1 {
  322. if seasonConf.NValue < 1 {
  323. err = errors.New("连续N年不允许小于1")
  324. return
  325. }
  326. currYear := time.Now().Year()
  327. for i := 0; i < seasonConf.NValue; i++ {
  328. yearList = append(yearList, currYear-i-1)
  329. }
  330. } else {
  331. yearList = seasonConf.YearList
  332. }
  333. predictEdbInfoData, tmpMinValue, tmpMaxValue, err = GetChartPredictEdbInfoDataListByRuleSeason(predictEdbConf.PredictEdbInfoId, yearList, calendar, startDate, dataEndTime, frequency, realPredictEdbInfoData, predictEdbInfoData, existMap)
  334. if err != nil {
  335. return
  336. }
  337. case 12: //12:根据 移动平均同比 规则获取预测数据
  338. var moveAverageConf MoveAverageConf
  339. tmpErr := json.Unmarshal([]byte(predictEdbConf.Value), &moveAverageConf)
  340. if tmpErr != nil {
  341. err = errors.New("季节性配置信息异常:" + tmpErr.Error())
  342. return
  343. }
  344. predictEdbInfoData, tmpMinValue, tmpMaxValue, err = GetChartPredictEdbInfoDataListByRuleMoveAverageTb(predictEdbConf.PredictEdbInfoId, moveAverageConf.NValue, moveAverageConf.Year, startDate, dataEndTime, frequency, realPredictEdbInfoData, predictEdbInfoData, existMap)
  345. if err != nil {
  346. return
  347. }
  348. case 13: //13:根据 同比增速差值 规则获取预测数据
  349. tmpValDecimal, tmpErr := decimal.NewFromString(predictEdbConf.Value)
  350. if tmpErr != nil {
  351. err = tmpErr
  352. return
  353. }
  354. tbEndValue, _ := tmpValDecimal.Float64()
  355. predictEdbInfoData, tmpMinValue, tmpMaxValue = GetChartPredictEdbInfoDataListByRuleTbzscz(predictEdbConf.PredictEdbInfoId, tbEndValue, dayList, frequency, realPredictEdbInfoData, predictEdbInfoData, existMap)
  356. case 14: //14:根据 一元线性拟合 规则获取预测数据
  357. var ruleConf RuleLineNhConf
  358. err = json.Unmarshal([]byte(predictEdbConf.Value), &ruleConf)
  359. if err != nil {
  360. err = errors.New("一元线性拟合配置信息异常:" + err.Error())
  361. return
  362. }
  363. // 规则计算的拟合残差值map
  364. newNhccDataMap := make(map[string]float64)
  365. if predictEdbConf.PredictEdbInfoId > 0 { //已经生成的动态数据
  366. tmpPredictEdbRuleDataList, tmpErr := data_manage.GetPredictEdbRuleDataList(predictEdbConf.PredictEdbInfoId, predictEdbConf.ConfigId, "", "")
  367. if tmpErr != nil {
  368. err = tmpErr
  369. return
  370. }
  371. for _, v := range tmpPredictEdbRuleDataList {
  372. newNhccDataMap[v.DataTime] = v.Value
  373. }
  374. } else { //未生成的动态数据,需要使用外部传入的数据进行计算
  375. newNhccDataMap, err = getCalculateNhccData(append(realPredictEdbInfoData, predictEdbInfoData...), ruleConf)
  376. if err != nil {
  377. return
  378. }
  379. }
  380. predictEdbInfoData, tmpMinValue, tmpMaxValue, err = GetChartPredictEdbInfoDataListByRuleLineNh(predictEdbConf.PredictEdbInfoId, dayList, realPredictEdbInfoData, predictEdbInfoData, newNhccDataMap, existMap)
  381. if err != nil {
  382. return
  383. }
  384. }
  385. //startDate = dataEndTime.AddDate(0, 0, 1)
  386. if startDate.Before(dataEndTime) {
  387. startDate = dataEndTime
  388. }
  389. if tmpMinValue < minValue {
  390. minValue = tmpMinValue
  391. }
  392. if tmpMaxValue < maxValue {
  393. maxValue = tmpMaxValue
  394. }
  395. }
  396. return
  397. }