Selaa lähdekoodia

Merge branch 'ETA_1.9.4'

zwxi 7 kuukautta sitten
vanhempi
commit
a1af1077e8
4 muutettua tiedostoa jossa 734 lisäystä ja 5 poistoa
  1. 161 4
      models/chart.go
  2. 318 1
      services/data/chart_info.go
  3. 113 0
      services/data/edb_data.go
  4. 142 0
      services/data/edb_info.go

+ 161 - 4
models/chart.go

@@ -680,10 +680,119 @@ type CorrelationInfo struct {
 }
 
 type SeasonExtraItem struct {
-	ChartLegend []SeasonChartLegend `description:"自定义的图例名称"`
-	XStartDate  string              `description:"横坐标显示的起始日"`
-	XEndDate    string              `description:"横坐标显示的截止日"`
-	JumpYear    int                 `description:"横坐标日期是否跨年,1跨年,0不跨年"`
+	ChartLegend                 []SeasonChartLegend         `description:"自定义的图例名称"`
+	XStartDate                  string                      `description:"横坐标显示的起始日"`
+	XEndDate                    string                      `description:"横坐标显示的截止日"`
+	JumpYear                    int                         `description:"横坐标日期是否跨年,1跨年,0不跨年"`
+	RightAxis                   SeasonRightAxis             `description:"自定义右轴指标"`
+	MaxMinLimits                MaxMinLimits                `description:"自定义同期上下限"`
+	SamePeriodAverage           SamePeriodAverage           `description:"自定义同期均线"`
+	SamePeriodStandardDeviation SamePeriodStandardDeviation `description:"自定义同期标准差"`
+}
+
+
+// 自定义右轴指标
+type SeasonRightAxis struct {
+	IndicatorType int    `description:"右轴指标类型 1:左轴指标同比,2:指标库,3:预测指标 "`
+	Style         string `description:"生成样式"`
+	Shape         string `description:"形状"`
+	ChartColor    string `description:"图表颜色"`
+	Size          int    `description:"大小"`
+	Legend        string `description:"图例名称"`
+	NumFormat     int    `description:"数值格式 1:百分比 2:小数"`
+	IsConnected   int    `description:"是否连接 0不连接 1连接"`
+	LineColor     string `description:"线条颜色"`
+	LineWidth     int    `description:"线条宽度"`
+	LineStyle     string `description:"线条样式"`
+	IsShow        bool   `description:"是否显示"`
+	IsAdd         bool   `description:"是否添加"`
+}
+
+// 自定义同期上下限
+type MaxMinLimits struct {
+	Color  string `description:"颜色"`
+	Year   int    `description:"上下限取值范围"`
+	Legend string `description:"图例名称"`
+	IsShow bool   `description:"是否显示"`
+	IsAdd  bool   `description:"是否添加"`
+}
+
+// 自定义同期均线
+type SamePeriodAverage struct {
+	Color     string `description:"颜色"`
+	Year      int    `description:"均线取值范围"`
+	Legend    string `description:"图例名称"`
+	LineType  string `description:"线型"`
+	LineWidth int    `description:"线宽"`
+	IsShow    bool   `description:"是否显示"`
+	IsAdd     bool   `description:"是否添加"`
+}
+
+// 自定义同期均线
+type SamePeriodAverageResp struct {
+	Color     string                   `description:"颜色"`
+	Year      int                      `description:"均线取值范围"`
+	Legend    string                   `description:"图例名称"`
+	LineType  string                   `description:"线型"`
+	LineWidth int                      `description:"线宽"`
+	IsShow    bool                     `description:"是否显示"`
+	List      []*SamePeriodAverageData `description:"自定义均线列表"`
+	IsAdd     bool                     `description:"是否添加"`
+}
+
+type SamePeriodAverageData struct {
+	DataTime      string  `description:"数据日期"`
+	DataTimestamp int64   `description:"数据日期时间戳"`
+	Value         float64 `description:"均值"`
+}
+
+// 自定义同期标准差
+type SamePeriodStandardDeviation struct {
+	Color    string  `description:"颜色"`
+	Year     int     `description:"标准差取值范围"`
+	Legend   string  `description:"图例名称"`
+	Multiple float64 `description:"标准差倍数"`
+	IsShow   bool    `description:"是否显示"`
+	IsAdd    bool    `description:"是否添加"`
+}
+
+type SamePeriodStandardDeviationResp struct {
+	Color    string              `description:"颜色"`
+	Year     int                 `description:"标准差取值范围"`
+	Legend   string              `description:"图例名称"`
+	Multiple float64             `description:"标准差倍数"`
+	IsShow   bool                `description:"是否显示"`
+	List     []*MaxMinLimitsData `description:"自定义标准差列表"`
+	IsAdd    bool                `description:"是否添加"`
+}
+
+type SeasonChartResp struct {
+	MaxMinLimits                MaxMinLimitsResp                `description:"自定义上下限"`
+	SamePeriodAverage           SamePeriodAverageResp           `description:"自定义同期均线"`
+	SamePeriodStandardDeviation SamePeriodStandardDeviationResp `description:"自定义同期标准差线"`
+	RightAxis                   SeasonRightAxisResp             `description:"自定义右轴指标"`
+}
+
+// 自定义右轴指标
+type SeasonRightAxisResp struct {
+	SeasonRightAxis
+	EdbInfoList []*ChartEdbInfoMapping
+}
+
+type MaxMinLimitsResp struct {
+	List   []*MaxMinLimitsData `description:"自定义上下限列表"`
+	Color  string              `description:"颜色"`
+	Year   int                 `description:"上下限取值范围"`
+	Legend string              `description:"图例名称"`
+	IsShow bool                `description:"是否显示"`
+	IsAdd  bool                `description:"是否添加"`
+}
+
+type MaxMinLimitsData struct {
+	DataTime      string  `description:"数据日期"`
+	DataTimestamp int64   `description:"数据日期时间戳"`
+	MaxValue      float64 `description:"最大值"`
+	MinValue      float64 `description:"最小值"`
 }
 
 type SeasonChartLegend struct {
@@ -709,3 +818,51 @@ type ChartDwCollectReq struct {
 	UniqueCode string
 	Token      string
 }
+
+type MarkersLine struct {
+	Axis             int             `json:"axis" description:"1左轴 2右轴 3横轴"`
+	AxisName         string          `json:"axisName" description:"轴的名称,例如'左轴'"`
+	MarkerType       string          `json:"markerType" description:"标识线或标识区"`
+	MarkLineType     int             `json:"markLineType" description:"1:固定 2:指标计算"`
+	Value            string          `json:"value" description:"连线指向的数值,例如'4000'"`
+	FromValue        string          `json:"fromValue" description:"连线的起始点,可以为空"`
+	ToValue          string          `json:"toValue" description:"连线的结束点,可以为空"`
+	LineWidth        int             `json:"lineWidth" description:"连线的宽度"`
+	DashStyle        string          `json:"dashStyle" description:"连线的虚线样式,例如'ShortDashDot'"`
+	Color            string          `json:"color" description:"连线的颜色"`
+	Text             string          `json:"text" description:"连线旁边显示的文本"`
+	TextPosition     string          `json:"textPosition" description:"文本的显示位置,例如'bottom'"`
+	TextColor        string          `json:"textColor" description:"文本颜色"`
+	TextFontSize     int             `json:"textFontSize" description:"文本的字号大小"`
+	IsShow           bool            `json:"isShow" description:"是否显示连线及文本"`
+	EdbType          int             `json:"edbType" description:"指标类型 0图中第一个指标 1其他指标 前端回显用"`
+	EdbInfoId        int             `json:"edbInfoId" description:"指标id"`
+	Calculation      int             `json:"calculation" description:"计算方式 1区间均值 2区间均值加N倍标准差 3区间个数分位 4区间数值分位"`
+	CalculationValue int             `json:"calculationValue" description:"计算方式对应的值 2就是几倍标准差 3就是分位值 4就是数值值·"`
+	TimeIntervalType int             `json:"timeInterval" description:"时间区间 0跟随图表 1自定义"`
+	StartDate        MarkersLineTime `json:"startTime" description:"开始时间"`
+	EndDate          MarkersLineTime `json:"endTime" description:"结束时间"`
+}
+
+type MarkersLineTime struct {
+	TimeType int               `json:"timeType" description:"时间类型 1固定 2动态 3至今(仅结束时间)"`
+	Date     string            `json:"date" description:"日期"`
+	Conf     EdbDateChangeConf `json:"conf" description:"动态时间配置"`
+}
+
+// EdbDateExtraConf
+// @Description: 导入指标日期前移和日期变换
+type EdbDateChangeConf struct {
+	MoveForward int `description:"前移的期数"`
+	BaseDate    int `description:"基准日期 0系统日期 1指标最新日期"`
+	DateChange  []*EdbDateConfDateChange
+}
+
+type EdbDateConfDateChange struct {
+	Year         int
+	Month        int
+	Day          int
+	Frequency    string `description:"频度变换"`
+	FrequencyDay string `description:"频度的固定日期"`
+	ChangeType   int    `description:"日期变换类型1日期位移,2指定频率"`
+}

+ 318 - 1
services/data/chart_info.go

@@ -124,6 +124,10 @@ func GetChartEdbData(chartInfoId, chartType int, calendar, startDate, endDate st
 
 	// 特殊图形数据处理
 	switch chartType {
+	case 2: // 季节性图
+		if seasonExtraConfig != "" {
+			dataResp, err = SeasonChartData(edbList, seasonExtraConfig)
+		}
 	case 7: // 柱形图
 		barChartConf := extraConfig.(data_manage.BarChartInfoReq)
 		xEdbIdValue, yDataList, err = BarChartData(mappingList, edbDataListMap, barChartConf.DateList, barChartConf.Sort)
@@ -230,6 +234,9 @@ func getEdbDataMapList(chartInfoId, chartType int, calendar, startDate, endDate
 		var diffSeconds int64
 		if chartType == 2 { //季节性图
 			startDateReal = startDate
+			if len(mappingList) > 1 {
+				item.IsAxis = v.IsAxis
+			}
 		} else {
 			if v.EdbInfoType == 0 && v.LeadUnit != "" && v.LeadValue > 0 { //领先指标
 				var startTimeRealTemp time.Time
@@ -329,7 +336,7 @@ func getEdbDataMapList(chartInfoId, chartType int, calendar, startDate, endDate
 			}
 		}
 
-		if chartType == 2 {
+		if chartType == 2 && item.IsAxis == 1 {
 			latestDate, tmpErr := time.Parse(utils.FormatDate, v.LatestDate)
 			if tmpErr != nil {
 				err = errors.New(fmt.Sprint("获取最后实际数据的日期失败,Err:" + tmpErr.Error() + ";LatestDate:" + v.LatestDate))
@@ -361,6 +368,29 @@ func getEdbDataMapList(chartInfoId, chartType int, calendar, startDate, endDate
 				}
 				item.DataList = quarterDataList
 			}
+		} else if chartType == 2 && item.IsAxis == 0 {
+			// 右轴数据处理,只要最新一年
+			latestDate, tmpErr := time.Parse(utils.FormatDate, v.LatestDate)
+			if tmpErr != nil {
+				//item.DataList = dataList
+				item.IsNullData = true
+				edbList = append(edbList, item)
+				continue
+				err = errors.New(fmt.Sprint("获取最后实际数据的日期失败,Err:" + tmpErr.Error() + ";LatestDate:" + v.LatestDate))
+				return
+			}
+			newDataList := make([]*models.EdbDataList, 0)
+			for _, v := range dataList {
+				dataTime, e := time.Parse(utils.FormatDate, v.DataTime)
+				if e != nil {
+					err = errors.New("季节性图处理右轴指标数据转换日期失败,Err:" + e.Error())
+					return
+				}
+				if dataTime.Year() == latestDate.Year() {
+					newDataList = append(newDataList, v)
+				}
+			}
+			item.DataList = newDataList
 		} else if chartType == 7 || chartType == utils.CHART_TYPE_RADAR { //柱方图
 			//item.DataList = dataList
 		} else {
@@ -1544,3 +1574,290 @@ func GetChartEdbDataV2(chartInfoId, chartType int, calendar, startDate, endDate
 
 	return
 }
+
+// SeasonChartData 季节性图的数据处理
+func SeasonChartData(dataList []*models.ChartEdbInfoMapping, seasonExtraConfig string) (dataResp models.SeasonChartResp, err error) {
+	var seasonConfig models.SeasonExtraItem
+	err = json.Unmarshal([]byte(seasonExtraConfig), &seasonConfig)
+	if err != nil {
+		err = errors.New("季节性图配置异常, Err:" + err.Error())
+		return
+	}
+
+	for _, mappingItem := range dataList {
+		if mappingItem.IsAxis == 0 {
+			continue
+		}
+		quarterDataList := mappingItem.DataList.(models.QuarterDataList)
+		// 上下限区间
+		if seasonConfig.MaxMinLimits.Year > 0 {
+			dataResp.MaxMinLimits.List = make([]*models.MaxMinLimitsData, 0)
+			dataTimeMap := make(map[time.Time]time.Time)
+			dataTimeList := make([]string, 0)
+			maxValueMap := make(map[time.Time]float64)
+			minValueMap := make(map[time.Time]float64)
+
+			maxMinDataList := make([]*models.MaxMinLimitsData, 0)
+			// 日度 周度插值
+			for _, v := range quarterDataList {
+				if mappingItem.Frequency == "日度" || mappingItem.Frequency == "周度" {
+					handleDataMap := make(map[string]float64)
+					dataTimeList, _, err = HandleDataByLinearRegressionToList(v.DataList, handleDataMap)
+					if err != nil {
+						err = errors.New("插值处理数据异常, Err:" + err.Error())
+						return
+					}
+					for _, date := range dataTimeList {
+						dateTime, e := time.Parse(utils.FormatDate, date)
+						if e != nil {
+							err = errors.New("时间格式化异常, Err:" + e.Error())
+							return
+						}
+						newDate := dateTime.AddDate(time.Now().Year()-dateTime.Year(), 0, 0)
+						// 处理上下限列表
+						if value, ok := maxValueMap[newDate]; ok {
+							if value < handleDataMap[date] {
+								maxValueMap[newDate] = handleDataMap[date]
+							}
+						} else {
+							maxValueMap[newDate] = handleDataMap[date]
+						}
+
+						if value, ok := minValueMap[newDate]; ok {
+							if value > handleDataMap[date] {
+								minValueMap[newDate] = handleDataMap[date]
+							}
+						} else {
+							minValueMap[newDate] = handleDataMap[date]
+						}
+
+						dataTimeMap[newDate] = newDate
+					}
+				} else {
+					// 旬度、月度、季度、半年度 不插值,需要先把日期列表和数据map取出来
+					for _, vv := range v.DataList {
+						dateTime, e := time.Parse(utils.FormatDate, vv.DataTime)
+						if e != nil {
+							err = errors.New("时间格式化异常, Err:" + e.Error())
+							return
+						}
+						newDate := dateTime.AddDate(time.Now().Year()-dateTime.Year(), 0, 0)
+
+						if value, ok := maxValueMap[newDate]; ok {
+							if value < vv.Value {
+								maxValueMap[newDate] = vv.Value
+							}
+						} else {
+							maxValueMap[newDate] = vv.Value
+						}
+
+						if value, ok := minValueMap[newDate]; ok {
+							if value > vv.Value {
+								minValueMap[newDate] = vv.Value
+							}
+						} else {
+							minValueMap[newDate] = vv.Value
+						}
+						dataTimeMap[newDate] = newDate
+					}
+				}
+			}
+
+			for _, v := range dataTimeMap {
+				maxMinItem := &models.MaxMinLimitsData{}
+				if maxValue, ok := maxValueMap[v]; ok {
+					maxMinItem.MaxValue = maxValue
+				} else {
+					maxMinItem.MaxValue = minValueMap[v]
+				}
+
+				if minValue, ok := minValueMap[v]; ok {
+					maxMinItem.MinValue = minValue
+				} else {
+					maxMinItem.MinValue = maxValueMap[v]
+				}
+				maxMinItem.DataTime = v.Format(utils.FormatDate)
+				maxMinItem.DataTimestamp = v.UnixNano() / 1e6
+
+				maxMinDataList = append(maxMinDataList, maxMinItem)
+
+			}
+
+			// 排序
+			sort.Slice(maxMinDataList, func(i, j int) bool {
+				return maxMinDataList[i].DataTime < maxMinDataList[j].DataTime
+			})
+
+			dataResp.MaxMinLimits.List = maxMinDataList
+			dataResp.MaxMinLimits.Color = seasonConfig.MaxMinLimits.Color
+			dataResp.MaxMinLimits.Legend = seasonConfig.MaxMinLimits.Legend
+			dataResp.MaxMinLimits.IsShow = seasonConfig.MaxMinLimits.IsShow
+			dataResp.MaxMinLimits.IsAdd = seasonConfig.MaxMinLimits.IsAdd
+			dataResp.MaxMinLimits.Year = seasonConfig.MaxMinLimits.Year
+		}
+
+		// 自定义同期均线
+		if seasonConfig.SamePeriodAverage.Year > 0 {
+			handleDataMap := make(map[string]float64)
+			dataTimeMap := make(map[time.Time]time.Time)
+			dataTimeList := make([]string, 0)
+			valueMap := make(map[time.Time]float64)
+
+			averageDataList := make([]*models.SamePeriodAverageData, 0)
+			for i := len(quarterDataList) - 1; i > len(quarterDataList)-seasonConfig.SamePeriodAverage.Year && i > 0; i-- {
+				// 插值成日度
+				dataTimeList, _, err = HandleDataByLinearRegressionToList(quarterDataList[i].DataList, handleDataMap)
+				if err != nil {
+					err = errors.New("插值处理数据异常, Err:" + err.Error())
+					return
+				}
+				for _, date := range dataTimeList {
+					dateTime, e := time.Parse(utils.FormatDate, date)
+					if e != nil {
+						err = errors.New("时间格式化异常, Err:" + e.Error())
+						return
+					}
+					// 不包含今年
+					if dateTime.Year() == time.Now().Year() {
+						continue
+					}
+					newDate := dateTime.AddDate(time.Now().Year()-dateTime.Year(), 0, 0)
+					// 处理均值
+					if value, ok := valueMap[newDate]; ok {
+						valueMap[newDate] = (handleDataMap[date] + value) / 2
+					} else {
+						valueMap[newDate] = handleDataMap[date]
+					}
+
+					dataTimeMap[newDate] = newDate
+				}
+			}
+
+			for _, v := range dataTimeMap {
+				averageItem := &models.SamePeriodAverageData{}
+				if value, ok := valueMap[v]; ok {
+					averageItem.Value = value
+				}
+				averageItem.DataTime = v.Format(utils.FormatDate)
+				averageItem.DataTimestamp = v.UnixNano() / 1e6
+
+				averageDataList = append(averageDataList, averageItem)
+
+			}
+
+			// 排序
+			sort.Slice(averageDataList, func(i, j int) bool {
+				return averageDataList[i].DataTime < averageDataList[j].DataTime
+			})
+
+			dataResp.SamePeriodAverage.List = averageDataList
+			dataResp.SamePeriodAverage.Year = seasonConfig.SamePeriodAverage.Year
+			dataResp.SamePeriodAverage.Color = seasonConfig.SamePeriodAverage.Color
+			dataResp.SamePeriodAverage.Legend = seasonConfig.SamePeriodAverage.Legend
+			dataResp.SamePeriodAverage.IsShow = seasonConfig.SamePeriodAverage.IsShow
+			dataResp.SamePeriodAverage.LineType = seasonConfig.SamePeriodAverage.LineType
+			dataResp.SamePeriodAverage.LineWidth = seasonConfig.SamePeriodAverage.LineWidth
+			dataResp.SamePeriodAverage.IsAdd = seasonConfig.SamePeriodAverage.IsAdd
+
+		}
+
+		// 自定义同期标准差
+		if seasonConfig.SamePeriodStandardDeviation.Year > 1 && seasonConfig.SamePeriodStandardDeviation.Multiple > 0 {
+			// 先算均值,再算标准差
+			handleDataMap := make(map[string]float64)
+			dataTimeMap := make(map[time.Time]time.Time)
+			dataTimeValueMap := make(map[time.Time][]float64)
+			dataTimeList := make([]string, 0)
+			valueMap := make(map[time.Time]float64)
+
+			samePeriodStandardDeviationList := make([]*models.MaxMinLimitsData, 0)
+			for i := len(quarterDataList) - 1; i > len(quarterDataList)-seasonConfig.SamePeriodAverage.Year-1 && i > 0; i-- {
+				// 插值成日度
+				dataTimeList, _, err = HandleDataByLinearRegressionToListV2(quarterDataList[i].DataList, handleDataMap)
+				if err != nil {
+					err = errors.New("插值处理数据异常, Err:" + err.Error())
+					return
+				}
+				for _, date := range dataTimeList {
+					dateTime, e := time.Parse(utils.FormatDate, date)
+					if e != nil {
+						err = errors.New("时间格式化异常, Err:" + e.Error())
+						return
+					}
+					// 不包含今年
+					if dateTime.Year() == time.Now().Year() {
+						continue
+					}
+					newDate := dateTime.AddDate(time.Now().Year()-dateTime.Year(), 0, 0)
+					// 处理均值
+					if value, ok := valueMap[newDate]; ok {
+						valueMap[newDate] = (handleDataMap[date] + value) / 2
+					} else {
+						valueMap[newDate] = handleDataMap[date]
+					}
+
+					dataTimeMap[newDate] = newDate
+					valueList := dataTimeValueMap[newDate]
+					valueList = append(valueList, handleDataMap[date])
+					dataTimeValueMap[newDate] = valueList
+				}
+			}
+
+			for _, v := range dataTimeMap {
+				valueList := dataTimeValueMap[v]
+				stdev := utils.CalculateStandardDeviation(valueList)
+				stdev, _ = decimal.NewFromFloat(stdev).Round(4).Float64()
+
+				maxMinItem := &models.MaxMinLimitsData{}
+
+				if value, ok := valueMap[v]; ok {
+					maxMinItem.MaxValue = value + stdev*seasonConfig.SamePeriodStandardDeviation.Multiple
+					maxMinItem.MinValue = value - stdev*seasonConfig.SamePeriodStandardDeviation.Multiple
+				}
+
+				maxMinItem.DataTime = v.Format(utils.FormatDate)
+				maxMinItem.DataTimestamp = v.UnixNano() / 1e6
+
+				samePeriodStandardDeviationList = append(samePeriodStandardDeviationList, maxMinItem)
+
+			}
+
+			// 排序
+			sort.Slice(samePeriodStandardDeviationList, func(i, j int) bool {
+				return samePeriodStandardDeviationList[i].DataTime < samePeriodStandardDeviationList[j].DataTime
+			})
+
+			dataResp.SamePeriodStandardDeviation.List = samePeriodStandardDeviationList
+			dataResp.SamePeriodStandardDeviation.Color = seasonConfig.SamePeriodStandardDeviation.Color
+			dataResp.SamePeriodStandardDeviation.Legend = seasonConfig.SamePeriodStandardDeviation.Legend
+			dataResp.SamePeriodStandardDeviation.IsShow = seasonConfig.SamePeriodStandardDeviation.IsShow
+			dataResp.SamePeriodStandardDeviation.Multiple = seasonConfig.SamePeriodStandardDeviation.Multiple
+			dataResp.SamePeriodStandardDeviation.Year = seasonConfig.SamePeriodStandardDeviation.Year
+			dataResp.SamePeriodStandardDeviation.IsAdd = seasonConfig.SamePeriodStandardDeviation.IsAdd
+		}
+
+		// 自定义右轴
+		if seasonConfig.RightAxis.IndicatorType != 0 {
+			if seasonConfig.RightAxis.IndicatorType == 1 {
+				startTime, _ := time.Parse(utils.FormatDate, mappingItem.StartDate)
+				for i := len(quarterDataList) - 1; i > len(quarterDataList)-2 && i > 0; i-- {
+					var rightMappingItem models.ChartEdbInfoMapping
+					rightMappingItem = *mappingItem
+					// 计算同比值
+					tbzDataList, minValue, maxValue, e := GetEdbDataTbzForSeason(mappingItem.Frequency, quarterDataList[i].DataList, startTime)
+					if e != nil {
+						err = errors.New("计算同比值失败, Err:" + e.Error())
+						return
+					}
+					rightMappingItem.DataList = tbzDataList
+					rightMappingItem.MaxData = maxValue
+					rightMappingItem.MinData = minValue
+					dataResp.RightAxis.EdbInfoList = append(dataResp.RightAxis.EdbInfoList, &rightMappingItem)
+				}
+			}
+			dataResp.RightAxis.SeasonRightAxis = seasonConfig.RightAxis
+		}
+	}
+
+	return
+}

+ 113 - 0
services/data/edb_data.go

@@ -0,0 +1,113 @@
+package data
+
+import (
+	"eta/eta_chart_lib/models"
+	"eta/eta_chart_lib/utils"
+	"time"
+)
+
+// GetEdbDataTbzForSeason 获取指标的同比值数据
+func GetEdbDataTbzForSeason(frequency string, tmpDataList []*models.EdbDataList, startDateTime time.Time) (dataList []*models.EdbDataList, minValue, maxValue float64, err error) {
+	dataList = make([]*models.EdbDataList, 0)
+
+	// 数据处理
+	var dateArr []string
+	dataMap := make(map[string]*models.EdbDataList)
+	for _, v := range tmpDataList {
+		dateArr = append(dateArr, v.DataTime)
+		dataMap[v.DataTime] = v
+	}
+	for _, av := range dateArr {
+		currentItem, ok := dataMap[av]
+		// 如果找不到当前日期的数据,那么终止当前循环,进入下一循环
+		if !ok {
+			continue
+		}
+		tmpItem := *currentItem
+		var isOk bool //是否计算出来结果
+
+		//当前日期
+		currentDate, tmpErr := time.ParseInLocation(utils.FormatDate, av, time.Local)
+		if tmpErr != nil {
+			err = tmpErr
+			return
+		}
+		// 如果存在开始日期,同时,当前日期早于开始日期,那么终止当前循环,进入下一循环
+		if !startDateTime.IsZero() && currentDate.Before(startDateTime) {
+			continue
+		}
+		//上一年的日期
+		preDate := currentDate.AddDate(-1, 0, 0)
+		preDateStr := preDate.Format(utils.FormatDate)
+		if findItem, ok := dataMap[preDateStr]; ok { //上一年同期找到
+			tmpItem.Value = TbzDiv(currentItem.Value, findItem.Value)
+			isOk = true
+		} else {
+			if frequency == "月度" { //向上和向下,各找一个月
+				for i := 0; i <= 35; i++ {
+					nextDateDay := preDate.AddDate(0, 0, i)
+					nextDateDayStr := nextDateDay.Format(utils.FormatDate)
+					if findItem, ok := dataMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
+						tmpItem.Value = TbzDiv(currentItem.Value, findItem.Value)
+						isOk = true
+						break
+					} else {
+						preDateDay := preDate.AddDate(0, 0, -i)
+						preDateDayStr := preDateDay.Format(utils.FormatDate)
+						if findItem, ok := dataMap[preDateDayStr]; ok { //上一年同期->上一个月找到
+							tmpItem.Value = TbzDiv(currentItem.Value, findItem.Value)
+							isOk = true
+							break
+						}
+					}
+				}
+			} else if frequency == "季度" || frequency == "年度" {
+				if findItem, ok := dataMap[preDateStr]; ok { //上一年同期->下一个月找到
+					tmpItem.Value = TbzDiv(currentItem.Value, findItem.Value)
+					isOk = true
+					break
+				}
+			} else {
+				nextDateDay := preDate.AddDate(0, 0, 1)
+				nextDateDayStr := nextDateDay.Format(utils.FormatDate)
+
+				preDateDay := preDate.AddDate(0, 0, -1)
+				preDateDayStr := preDateDay.Format(utils.FormatDate)
+
+				for i := 0; i < 35; i++ {
+					if i >= 1 {
+						nextDateDay = nextDateDay.AddDate(0, 0, i)
+						nextDateDayStr = nextDateDay.Format(utils.FormatDate)
+					}
+					if findItem, ok := dataMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
+						tmpItem.Value = TbzDiv(currentItem.Value, findItem.Value)
+						isOk = true
+						break
+					} else {
+						if i >= 1 {
+							preDateDay = preDate.AddDate(0, 0, -i)
+							preDateDayStr = nextDateDay.Format(utils.FormatDate)
+						}
+						if findItem, ok := dataMap[preDateDayStr]; ok { //上一年同期->上一个月找到
+							tmpItem.Value = TbzDiv(currentItem.Value, findItem.Value)
+							isOk = true
+							break
+						}
+					}
+				}
+			}
+		}
+
+		if isOk {
+			if tmpItem.Value > maxValue {
+				maxValue = tmpItem.Value
+			}
+			if tmpItem.Value < minValue {
+				minValue = tmpItem.Value
+			}
+			dataList = append(dataList, &tmpItem)
+		}
+	}
+
+	return
+}

+ 142 - 0
services/data/edb_info.go

@@ -7,6 +7,8 @@ import (
 	"eta/eta_chart_lib/services/alarm_msg"
 	"eta/eta_chart_lib/utils"
 	"fmt"
+	"github.com/shopspring/decimal"
+	"math"
 	"sort"
 	"time"
 )
@@ -1265,3 +1267,143 @@ func GetEdbSourceByEdbInfoIdListForExcel(edbInfoIdList []int) (sourceNameList, s
 	}
 	return
 }
+
+
+// HandleDataByLinearRegressionToList 插值法补充数据(线性方程式)
+func HandleDataByLinearRegressionToList (edbInfoDataList []*models.EdbDataList, handleDataMap map[string]float64) (dataTimeList []string,valueList []float64, err error) {
+	if len(edbInfoDataList) < 2 {
+		return
+	}
+
+	var startEdbInfoData *models.EdbDataList
+	for _, v := range edbInfoDataList {
+		handleDataMap[v.DataTime] = v.Value
+		dataTimeList = append(dataTimeList, v.DataTime)
+		// 第一个数据就给过滤了,给后面的试用
+		if startEdbInfoData == nil {
+			startEdbInfoData = v
+			//startEdbInfoData.DataTime = startEdbInfoData.DataTime[:5]+ "01-01"
+			continue
+		}
+
+		// 获取两条数据之间相差的天数
+		startDataTime, _ := time.ParseInLocation(utils.FormatDate, startEdbInfoData.DataTime, time.Local)
+		currDataTime, _ := time.ParseInLocation(utils.FormatDate, v.DataTime, time.Local)
+		betweenHour := int(currDataTime.Sub(startDataTime).Hours())
+		betweenDay := betweenHour / 24
+
+		// 如果相差一天,那么过滤
+		if betweenDay <= 1 {
+			startEdbInfoData = v
+			continue
+		}
+
+		// 生成线性方程式
+		var a, b float64
+		{
+			coordinateData := make([]utils.Coordinate, 0)
+			tmpCoordinate1 := utils.Coordinate{
+				X: 1,
+				Y: startEdbInfoData.Value,
+			}
+			coordinateData = append(coordinateData, tmpCoordinate1)
+			tmpCoordinate2 := utils.Coordinate{
+				X: float64(betweenDay) + 1,
+				Y: v.Value,
+			}
+			coordinateData = append(coordinateData, tmpCoordinate2)
+
+			a, b = utils.GetLinearResult(coordinateData)
+			if math.IsNaN(a) || math.IsNaN(b) {
+				err = errors.New("线性方程公式生成失败")
+				return
+			}
+		}
+
+		// 生成对应的值
+		{
+			for i := 1; i < betweenDay; i++ {
+				tmpDataTime := startDataTime.AddDate(0, 0, i)
+				aDecimal := decimal.NewFromFloat(a)
+				xDecimal := decimal.NewFromInt(int64(i) + 1)
+				bDecimal := decimal.NewFromFloat(b)
+
+				val, _ := aDecimal.Mul(xDecimal).Add(bDecimal).Round(4).Float64()
+				handleDataMap[tmpDataTime.Format(utils.FormatDate)] = val
+				dataTimeList = append(dataTimeList, tmpDataTime.Format(utils.FormatDate))
+				valueList = append(valueList, val)
+			}
+		}
+
+		startEdbInfoData = v
+	}
+
+	return
+}
+
+// HandleDataByLinearRegressionToList 保证生成365个数据点的线性插值法
+func HandleDataByLinearRegressionToListV2(edbInfoDataList []*models.EdbDataList, handleDataMap map[string]float64) (dataTimeList []string, valueList []float64, err error) {
+	if len(edbInfoDataList) < 2 {
+		return
+	}
+
+	// 确保至少有两天数据来生成线性方程
+	if len(edbInfoDataList) < 2 {
+		err = errors.New("至少需要两天的数据来执行线性插值")
+		return
+	}
+
+	// 对数据按日期排序,确保顺序正确
+	sort.Slice(edbInfoDataList, func(i, j int) bool {
+		t1, _ := time.ParseInLocation(utils.FormatDate, edbInfoDataList[i].DataTime, time.Local)
+		t2, _ := time.ParseInLocation(utils.FormatDate, edbInfoDataList[j].DataTime, time.Local)
+		return t1.Before(t2)
+	})
+
+	startEdbInfoData := edbInfoDataList[0]
+	endEdbInfoData := edbInfoDataList[len(edbInfoDataList)-1]
+
+	// 计算起始和结束日期间实际的天数
+	startDate, _ := time.ParseInLocation(utils.FormatDate, startEdbInfoData.DataTime, time.Local)
+	endDate, _ := time.ParseInLocation(utils.FormatDate, endEdbInfoData.DataTime, time.Local)
+	actualDays := endDate.Sub(startDate).Hours() / 24
+
+	// 生成365个数据点,首先处理已有数据
+	for _, v := range edbInfoDataList {
+		handleDataMap[v.DataTime] = v.Value
+		dataTimeList = append(dataTimeList, v.DataTime)
+		valueList = append(valueList, v.Value)
+	}
+
+	// 如果已有数据跨越天数不足365天,则对缺失的日期进行线性插值
+	if actualDays < 365 {
+		// 使用已有数据点生成线性方程(这里简化处理,实际可能需更细致处理边界情况)
+		var a, b float64
+		coordinateData := []utils.Coordinate{
+			{X: 1, Y: startEdbInfoData.Value},
+			{X: float64(len(edbInfoDataList)), Y: endEdbInfoData.Value},
+		}
+		a, b = utils.GetLinearResult(coordinateData)
+		if math.IsNaN(a) || math.IsNaN(b) {
+			err = errors.New("线性方程公式生成失败")
+			return
+		}
+
+		// 对剩余日期进行插值
+		for i := 1; i < 365; i++ {
+			day := startDate.AddDate(0, 0, i)
+			if _, exists := handleDataMap[day.Format(utils.FormatDate)]; !exists {
+				aDecimal := decimal.NewFromFloat(a)
+				xDecimal := decimal.NewFromInt(int64(i) + 1)
+				bDecimal := decimal.NewFromFloat(b)
+
+				val, _ := aDecimal.Mul(xDecimal).Add(bDecimal).Round(4).Float64()
+				handleDataMap[day.Format(utils.FormatDate)] = val
+				dataTimeList = append(dataTimeList, day.Format(utils.FormatDate))
+				valueList = append(valueList, val)
+			}
+		}
+	}
+
+	return
+}