predict_edb_info_rule.go 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375
  1. package models
  2. import (
  3. "errors"
  4. "fmt"
  5. "github.com/nosixtools/solarlunar"
  6. "github.com/shopspring/decimal"
  7. "hongze/hongze_edb_lib/utils"
  8. "math"
  9. "strings"
  10. "time"
  11. )
  12. // GetChartPredictEdbInfoDataListByRule1 根据规则1获取预测数据
  13. func GetChartPredictEdbInfoDataListByRule1(edbInfoId int, dataValue float64, dayList []time.Time, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData) {
  14. newPredictEdbInfoData = predictEdbInfoData
  15. //获取后面的预测数据
  16. predictEdbInfoData = make([]*EdbInfoSearchData, 0)
  17. for k, v := range dayList {
  18. newPredictEdbInfoData = append(newPredictEdbInfoData, &EdbInfoSearchData{
  19. EdbDataId: edbInfoId + 10000000000 + k,
  20. DataTime: v.Format(utils.FormatDate),
  21. Value: dataValue,
  22. })
  23. existMap[v.Format(utils.FormatDate)] = dataValue
  24. }
  25. return
  26. }
  27. // GetChartPredictEdbInfoDataListByRuleTb 根据同比值规则获取预测数据
  28. // 2.1 同比: 在未来某一个时间段内,给定一个固定的同比增速a,用去年同期值X乘以同比增速(1+a),得到预测值Y=X(1+a)
  29. // 例: 今年1-3月值,100,100,120。给定同比增速a=0.1,则明年1-3月预测值为: 100*1.1=110,100*1.1=110,120*1.1=132。
  30. func GetChartPredictEdbInfoDataListByRuleTb(edbInfoId int, tbValue float64, dayList []time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  31. allDataList := make([]*EdbInfoSearchData, 0)
  32. allDataList = append(allDataList, realPredictEdbInfoData...)
  33. allDataList = append(allDataList, predictEdbInfoData...)
  34. newPredictEdbInfoData = predictEdbInfoData
  35. index := len(allDataList)
  36. //获取后面的预测数据
  37. predictEdbInfoData = make([]*EdbInfoSearchData, 0)
  38. for k, currentDate := range dayList {
  39. tmpData := &EdbInfoSearchData{
  40. EdbDataId: edbInfoId + 10000000000 + index + k,
  41. DataTime: currentDate.Format(utils.FormatDate),
  42. //Value: dataValue,
  43. }
  44. var val float64
  45. var calculateStatus bool //计算结果
  46. //currentItem := existMap[av]
  47. //上一年的日期
  48. preDate := currentDate.AddDate(-1, 0, 0)
  49. preDateStr := preDate.Format(utils.FormatDate)
  50. if preValue, ok := existMap[preDateStr]; ok { //上一年同期找到
  51. val = PredictTbzDiv(preValue, tbValue)
  52. calculateStatus = true
  53. } else {
  54. switch frequency {
  55. case "月度":
  56. //向上和向下,各找一个月
  57. nextDateDay := preDate
  58. preDateDay := preDate
  59. for i := 0; i <= 35; i++ {
  60. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  61. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  62. val = PredictTbzDiv(preValue, tbValue)
  63. calculateStatus = true
  64. break
  65. } else {
  66. preDateDayStr := preDateDay.Format(utils.FormatDate)
  67. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  68. val = PredictTbzDiv(preValue, tbValue)
  69. calculateStatus = true
  70. break
  71. }
  72. }
  73. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  74. preDateDay = preDateDay.AddDate(0, 0, -1)
  75. }
  76. case "季度", "年度":
  77. if preValue, ok := existMap[preDateStr]; ok { //上一年同期->下一个月找到
  78. val = PredictTbzDiv(preValue, tbValue)
  79. calculateStatus = true
  80. break
  81. }
  82. default:
  83. nextDateDay := preDate
  84. preDateDay := preDate
  85. for i := 0; i < 35; i++ {
  86. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  87. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  88. val = PredictTbzDiv(preValue, tbValue)
  89. calculateStatus = true
  90. break
  91. } else {
  92. preDateDayStr := preDateDay.Format(utils.FormatDate)
  93. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  94. val = PredictTbzDiv(preValue, tbValue)
  95. calculateStatus = true
  96. break
  97. } else {
  98. //fmt.Println("pre not find:", preDateStr, "i:", i)
  99. }
  100. }
  101. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  102. preDateDay = preDateDay.AddDate(0, 0, -1)
  103. }
  104. }
  105. }
  106. if calculateStatus {
  107. tmpData.Value = val
  108. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  109. allDataList = append(allDataList, tmpData)
  110. existMap[tmpData.DataTime] = val
  111. // 最大最小值
  112. if val < minValue {
  113. minValue = val
  114. }
  115. if val > maxValue {
  116. maxValue = val
  117. }
  118. }
  119. }
  120. return
  121. }
  122. // PredictTbzDiv 同比值计算
  123. // @params a float64 去年同期值
  124. // @params b float64 固定同比增速
  125. func PredictTbzDiv(a, b float64) (result float64) {
  126. // 去年同期值
  127. af := decimal.NewFromFloat(a)
  128. // 同比增速
  129. bf := decimal.NewFromFloat(b)
  130. // 默认1
  131. cf := decimal.NewFromFloat(1)
  132. // 总增速
  133. val := bf.Add(cf)
  134. // 计算
  135. result, _ = val.Mul(af).RoundCeil(4).Float64()
  136. return
  137. }
  138. // GetChartPredictEdbInfoDataListByRuleTc 根据同差值规则获取预测数据
  139. // 2.2 同差: 在未来某一个时间段内,给定一个固定的同比增加值a,用去年同期值X加上同比增加值A,得到预测值Y=X+a
  140. // 例: 今年1-3月值,100,100,120。给定同比增加值a=10,则明年1-3月预测值为: 100+10=110,100+10=110,120+10=130
  141. func GetChartPredictEdbInfoDataListByRuleTc(edbInfoId int, tcValue float64, dayList []time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  142. allDataList := make([]*EdbInfoSearchData, 0)
  143. allDataList = append(allDataList, realPredictEdbInfoData...)
  144. allDataList = append(allDataList, predictEdbInfoData...)
  145. newPredictEdbInfoData = predictEdbInfoData
  146. index := len(allDataList)
  147. //获取后面的预测数据
  148. predictEdbInfoData = make([]*EdbInfoSearchData, 0)
  149. for k, currentDate := range dayList {
  150. tmpData := &EdbInfoSearchData{
  151. EdbDataId: edbInfoId + 10000000000 + index + k,
  152. DataTime: currentDate.Format(utils.FormatDate),
  153. //Value: dataValue,
  154. }
  155. var val float64
  156. var calculateStatus bool //计算结果
  157. //currentItem := existMap[av]
  158. //上一年的日期
  159. preDate := currentDate.AddDate(-1, 0, 0)
  160. preDateStr := preDate.Format(utils.FormatDate)
  161. if preValue, ok := existMap[preDateStr]; ok { //上一年同期找到
  162. val = PredictTczDiv(preValue, tcValue)
  163. calculateStatus = true
  164. } else {
  165. switch frequency {
  166. case "月度":
  167. //向上和向下,各找一个月
  168. nextDateDay := preDate
  169. preDateDay := preDate
  170. for i := 0; i <= 35; i++ {
  171. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  172. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  173. val = PredictTczDiv(preValue, tcValue)
  174. calculateStatus = true
  175. break
  176. } else {
  177. preDateDayStr := preDateDay.Format(utils.FormatDate)
  178. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  179. val = PredictTczDiv(preValue, tcValue)
  180. calculateStatus = true
  181. break
  182. }
  183. }
  184. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  185. preDateDay = preDateDay.AddDate(0, 0, -1)
  186. }
  187. case "季度", "年度":
  188. if preValue, ok := existMap[preDateStr]; ok { //上一年同期->下一个月找到
  189. val = PredictTczDiv(preValue, tcValue)
  190. calculateStatus = true
  191. break
  192. }
  193. default:
  194. nextDateDay := preDate
  195. preDateDay := preDate
  196. for i := 0; i < 35; i++ {
  197. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  198. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  199. val = PredictTczDiv(preValue, tcValue)
  200. calculateStatus = true
  201. break
  202. } else {
  203. preDateDayStr := preDateDay.Format(utils.FormatDate)
  204. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  205. val = PredictTczDiv(preValue, tcValue)
  206. calculateStatus = true
  207. break
  208. } else {
  209. //fmt.Println("pre not find:", preDateStr, "i:", i)
  210. }
  211. }
  212. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  213. preDateDay = preDateDay.AddDate(0, 0, -1)
  214. }
  215. }
  216. }
  217. if calculateStatus {
  218. tmpData.Value = val
  219. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  220. allDataList = append(allDataList, tmpData)
  221. existMap[tmpData.DataTime] = val
  222. // 最大最小值
  223. if val < minValue {
  224. minValue = val
  225. }
  226. if val > maxValue {
  227. maxValue = val
  228. }
  229. }
  230. }
  231. return
  232. }
  233. // PredictTczDiv 环差值计算
  234. // @params a float64 上一期值
  235. // @params b float64 固定的环比增加值
  236. func PredictTczDiv(a, b float64) (result float64) {
  237. if b != 0 {
  238. // 上一期值
  239. af := decimal.NewFromFloat(a)
  240. // 固定的环比增加值
  241. bf := decimal.NewFromFloat(b)
  242. // 计算
  243. result, _ = af.Add(bf).RoundCeil(4).Float64()
  244. } else {
  245. result = 0
  246. }
  247. return
  248. }
  249. // GetChartPredictEdbInfoDataListByRuleHb 根据环比值规则获取预测数据
  250. // 环比:在未来某一个时间段内,给定一个固定的环比增速a,用上一期值X乘以环比增速(1+a),得到预测值Y=X(1+a)
  251. // 例: 最近1期值为100,给定环比增速a=0.2,则未来3期预测值为: 100*1.2=120,120*1.2=144,144*1.2=172.8
  252. func GetChartPredictEdbInfoDataListByRuleHb(edbInfoId int, hbValue float64, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  253. allDataList := make([]*EdbInfoSearchData, 0)
  254. allDataList = append(allDataList, realPredictEdbInfoData...)
  255. allDataList = append(allDataList, predictEdbInfoData...)
  256. newPredictEdbInfoData = predictEdbInfoData
  257. index := len(allDataList)
  258. //获取后面的预测数据
  259. for k, currentDate := range dayList {
  260. tmpK := index + k - 1 //上1期的值
  261. // 环比值计算
  262. val := PredictHbzDiv(allDataList[tmpK].Value, hbValue)
  263. currentDateStr := currentDate.Format(utils.FormatDate)
  264. tmpData := &EdbInfoSearchData{
  265. EdbDataId: edbInfoId + 10000000000 + index + k,
  266. DataTime: currentDateStr,
  267. Value: val,
  268. }
  269. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  270. allDataList = append(allDataList, tmpData)
  271. existMap[currentDateStr] = val
  272. // 最大最小值
  273. if val < minValue {
  274. minValue = val
  275. }
  276. if val > maxValue {
  277. maxValue = val
  278. }
  279. }
  280. return
  281. }
  282. // PredictHbzDiv 环比值计算
  283. // @params a float64 上一期值
  284. // @params b float64 固定的环比增速
  285. func PredictHbzDiv(a, b float64) (result float64) {
  286. if b != 0 {
  287. // 上一期值
  288. af := decimal.NewFromFloat(a)
  289. // 固定的环比增速
  290. bf := decimal.NewFromFloat(b)
  291. // 默认1
  292. cf := decimal.NewFromFloat(1)
  293. // 总增速
  294. val := bf.Add(cf)
  295. // 计算
  296. result, _ = val.Mul(af).RoundCeil(4).Float64()
  297. } else {
  298. result = 0
  299. }
  300. return
  301. }
  302. // GetChartPredictEdbInfoDataListByRuleHc 根据环差值规则获取预测数据
  303. // 2.4 环差:在未来某一个时间段内,给定一个固定的环比增加值a,用上一期值X加上环比增加值a,得到预测值Y=X+a
  304. // 例: 最近1期值为100,给定环比增加值a=10,则未来3期预测值为: 100+10=110,110+10=120,120+10=130
  305. func GetChartPredictEdbInfoDataListByRuleHc(edbInfoId int, hcValue float64, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  306. allDataList := make([]*EdbInfoSearchData, 0)
  307. allDataList = append(allDataList, realPredictEdbInfoData...)
  308. allDataList = append(allDataList, predictEdbInfoData...)
  309. newPredictEdbInfoData = predictEdbInfoData
  310. index := len(allDataList)
  311. //获取后面的预测数据
  312. for k, currentDate := range dayList {
  313. tmpK := index + k - 1 //上1期的值
  314. // 环差别值计算
  315. val := PredictHczDiv(allDataList[tmpK].Value, hcValue)
  316. currentDateStr := currentDate.Format(utils.FormatDate)
  317. tmpData := &EdbInfoSearchData{
  318. EdbDataId: edbInfoId + 10000000000 + index + k,
  319. DataTime: currentDateStr,
  320. Value: val,
  321. }
  322. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  323. allDataList = append(allDataList, tmpData)
  324. existMap[currentDateStr] = val
  325. // 最大最小值
  326. if val < minValue {
  327. minValue = val
  328. }
  329. if val > maxValue {
  330. maxValue = val
  331. }
  332. }
  333. return
  334. }
  335. // PredictHczDiv 环差值计算
  336. // @params a float64 上一期值
  337. // @params b float64 固定的环比增加值
  338. func PredictHczDiv(a, b float64) (result float64) {
  339. if b != 0 {
  340. // 上一期值
  341. af := decimal.NewFromFloat(a)
  342. // 固定的环比增加值
  343. bf := decimal.NewFromFloat(b)
  344. // 计算
  345. result, _ = af.Add(bf).RoundCeil(4).Float64()
  346. } else {
  347. result = 0
  348. }
  349. return
  350. }
  351. // GetChartPredictEdbInfoDataListByRuleNMoveMeanValue 根据N期移动均值规则获取预测数据
  352. // 2.5 N期移动均值:在未来某一个时间段内,下一期值等于过去N期值得平均值。
  353. // 例:最近3期值(N=3),为95,98,105则未来第1期值为 1/3*(95+98+105)=99.33, 未来第2期值为 1/3*(98+105+99.33)=100.78依次类推。
  354. func GetChartPredictEdbInfoDataListByRuleNMoveMeanValue(edbInfoId int, nValue int, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  355. allDataList := make([]*EdbInfoSearchData, 0)
  356. allDataList = append(allDataList, realPredictEdbInfoData...)
  357. allDataList = append(allDataList, predictEdbInfoData...)
  358. newPredictEdbInfoData = predictEdbInfoData
  359. lenAllData := len(allDataList)
  360. if lenAllData < nValue || lenAllData <= 0 {
  361. return
  362. }
  363. if nValue <= 0 {
  364. return
  365. }
  366. // 分母
  367. decimalN := decimal.NewFromInt(int64(nValue))
  368. //获取后面的预测数据
  369. for k, currentDate := range dayList {
  370. tmpIndex := lenAllData + k - 1 //上1期的值
  371. // 数据集合中的最后一个数据
  372. tmpDecimalVal := decimal.NewFromFloat(allDataList[tmpIndex].Value)
  373. for tmpK := 2; tmpK <= nValue; tmpK++ {
  374. tmpIndex2 := tmpIndex - tmpK //上N期的值
  375. tmpDecimalVal2 := decimal.NewFromFloat(allDataList[tmpIndex2].Value)
  376. tmpDecimalVal = tmpDecimalVal.Add(tmpDecimalVal2)
  377. }
  378. // N期移动均值计算
  379. val, _ := tmpDecimalVal.Div(decimalN).RoundCeil(4).Float64()
  380. currentDateStr := currentDate.Format(utils.FormatDate)
  381. tmpData := &EdbInfoSearchData{
  382. EdbDataId: edbInfoId + 10000000000 + lenAllData + k,
  383. DataTime: currentDateStr,
  384. Value: val,
  385. }
  386. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  387. allDataList = append(allDataList, tmpData)
  388. existMap[currentDateStr] = val
  389. // 最大最小值
  390. if val < minValue {
  391. minValue = val
  392. }
  393. if val > maxValue {
  394. maxValue = val
  395. }
  396. }
  397. return
  398. }
  399. // GetChartPredictEdbInfoDataListByRuleNLinearRegression 根据N期移动均值规则获取预测数据
  400. // 2.6N期段线性外推值:给出过去N期值所确定的线性回归方程(Y=aX+b)在未来一段时间内的推算值。回归方程虽然比较复杂,但各种编程语言应该都有现成的模块或函数,应该无需自己编写。
  401. // 例1:过去5期值(N=5)分别为:3,5,7,9,11(每两期值之间的时间间隔相等)。那么按照线性回归方程推算,未来三期的预测值是:13,15,17。
  402. //
  403. // 例2:过去6期值(N=6)分别为:3,3,5,7,9,11(每两期值之间的时间间隔相等)。那么按照线性回归方程推算,未来三期的预测值是:12.33,14.05,15.76。例1和例2的区别在于,多加了一期数据,导致回归方程发生改变,从而预测值不同。
  404. func GetChartPredictEdbInfoDataListByRuleNLinearRegression(edbInfoId int, nValue int, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
  405. //var errMsg string
  406. //defer func() {
  407. // if errMsg != `` {
  408. // go alarm_msg.SendAlarmMsg("更新上海的token失败;ERR:"+err.Error(), 3)
  409. // }
  410. //}()
  411. allDataList := make([]*EdbInfoSearchData, 0)
  412. allDataList = append(allDataList, realPredictEdbInfoData...)
  413. allDataList = append(allDataList, predictEdbInfoData...)
  414. newPredictEdbInfoData = predictEdbInfoData
  415. lenAllData := len(allDataList)
  416. if lenAllData < nValue || lenAllData <= 0 {
  417. return
  418. }
  419. if nValue <= 1 {
  420. return
  421. }
  422. //获取后面的预测数据
  423. // 获取线性方程公式的a、b的值
  424. coordinateData := make([]utils.Coordinate, 0)
  425. for tmpK := nValue; tmpK > 0; tmpK-- {
  426. tmpIndex2 := lenAllData - tmpK //上N期的值
  427. tmpCoordinate := utils.Coordinate{
  428. X: float64(nValue - tmpK + 1),
  429. Y: allDataList[tmpIndex2].Value,
  430. }
  431. coordinateData = append(coordinateData, tmpCoordinate)
  432. }
  433. a, b := utils.GetLinearResult(coordinateData)
  434. if math.IsNaN(a) || math.IsNaN(b) {
  435. err = errors.New("线性方程公式生成失败")
  436. return
  437. }
  438. //fmt.Println("a:", a, ";======b:", b)
  439. aDecimal := decimal.NewFromFloat(a)
  440. bDecimal := decimal.NewFromFloat(b)
  441. for k, currentDate := range dayList {
  442. tmpK := nValue + k + 1
  443. xDecimal := decimal.NewFromInt(int64(tmpK))
  444. val, _ := aDecimal.Mul(xDecimal).Add(bDecimal).RoundCeil(4).Float64()
  445. currentDateStr := currentDate.Format(utils.FormatDate)
  446. tmpData := &EdbInfoSearchData{
  447. EdbDataId: edbInfoId + 10000000000 + lenAllData + k,
  448. DataTime: currentDateStr,
  449. Value: val,
  450. }
  451. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  452. allDataList = append(allDataList, tmpData)
  453. existMap[currentDateStr] = val
  454. // 最大最小值
  455. if val < minValue {
  456. minValue = val
  457. }
  458. if val > maxValue {
  459. maxValue = val
  460. }
  461. }
  462. return
  463. }
  464. // GetChartPredictEdbInfoDataListByRuleTrendsHC 根据动态环比增加值的计算规则获取预测数据
  465. //
  466. // 研究员有对预测指标进行动态环差计算的需求,即预测指标使用环差规则进行预测时,环比增加值不是固定值,而是由几个预测指标计算得出的动态变化的值;
  467. // 需求说明:
  468. // 1、增加“动态环差”预测规则;
  469. // 2、环比增加值在弹窗设置;
  470. // 3、动态环差预测举例:
  471. // 指标A实际最新数据为2022-10-27(100);
  472. // 预测指标B预测数据为2022-10-28(240)、2022-10-29(300);
  473. // 预测指标C预测数据为2022-10-28(260)、2022-10-29(310);
  474. // 计算公式为B-C;
  475. // 则指标A至2022-10-29的预测值为2022-10-28(100+(240-260)=80)、2022-10-29(80+(300-310)=90);
  476. // 注:动态环比增加值的计算遵从计算指标的计算规则,即用于计算的指标若有部分指标缺少部分日期数据,则这部分日期数据不做计算,为空;若动态环比增加值某一天为空,则往前追溯最近一期有值的环比增加值作为该天的数值参与计算;
  477. func GetChartPredictEdbInfoDataListByRuleTrendsHC(edbInfoId int, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, hcDataMap, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  478. allDataList := make([]*EdbInfoSearchData, 0)
  479. allDataList = append(allDataList, realPredictEdbInfoData...)
  480. allDataList = append(allDataList, predictEdbInfoData...)
  481. newPredictEdbInfoData = predictEdbInfoData
  482. lenAllData := len(allDataList)
  483. if lenAllData <= 0 {
  484. return
  485. }
  486. for k, currentDate := range dayList {
  487. // 最近一条数据
  488. tmpLenAllDataList := len(allDataList)
  489. lastValue := allDataList[tmpLenAllDataList-1].Value
  490. // 动态环差值数据
  491. currentDateStr := currentDate.Format(utils.FormatDate)
  492. hcVal, ok := hcDataMap[currentDateStr]
  493. if !ok {
  494. continue
  495. }
  496. lastValueDecimal := decimal.NewFromFloat(lastValue)
  497. hcValDecimal := decimal.NewFromFloat(hcVal)
  498. val, _ := lastValueDecimal.Add(hcValDecimal).RoundCeil(4).Float64()
  499. tmpData := &EdbInfoSearchData{
  500. EdbDataId: edbInfoId + 10000000000 + lenAllData + k,
  501. //EdbInfoId: edbInfoId,
  502. DataTime: currentDateStr,
  503. Value: val,
  504. //DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  505. }
  506. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  507. allDataList = append(allDataList, tmpData)
  508. existMap[currentDateStr] = val
  509. // 最大最小值
  510. if val < minValue {
  511. minValue = val
  512. }
  513. if val > maxValue {
  514. maxValue = val
  515. }
  516. }
  517. return
  518. }
  519. // GetChartPredictEdbInfoDataListByRuleFinalValueHc 根据 给定终值后插值 规则获取预测数据
  520. //
  521. // 项目背景:
  522. // 假设螺纹产量在2023年1月1号的预测值是255万吨,从当下到2023年1月1号,螺纹产量将会线性变化,那么每一期的螺纹产量是多少?
  523. // 算法:从当下(2022/10/28)到2023/1/1号,一共65天,从当前值(305.02)到255,差值-50.02,
  524. // 则每日环差为-50.02/65=-0.7695。因为数据点是周度频率,每周环差为,-0.3849*7=-5.3868。
  525. // 从以上计算过程可看出,“给定终值后差值”的算法,是在“环差”算法的基础上,做的一个改动。即这个”环差值”=【(终值-最新值)/终值与最新值得日期差】*数据频率
  526. // 需求说明:
  527. // 1、增加一个预测规则,名为“给定终值后插值”,给定预测截止日期和预测终值,计算最新数据日期至预测截止日期的时间差T,计算最新数据和预测终值的数据差S,数据频率与指标频度有关,日度=1,周度=7,旬度=10,月度=30,季度=90,年度=365,环差值=S/T*频率,预测数值=前一天数值+环差值;
  528. // 2、最新数据值和日期改动后,需重新计算环差值和预测数值;
  529. func GetChartPredictEdbInfoDataListByRuleFinalValueHc(edbInfoId int, finalValue float64, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  530. allDataList := make([]*EdbInfoSearchData, 0)
  531. allDataList = append(allDataList, realPredictEdbInfoData...)
  532. allDataList = append(allDataList, predictEdbInfoData...)
  533. newPredictEdbInfoData = predictEdbInfoData
  534. index := len(allDataList)
  535. //获取后面的预测日期
  536. lenDay := len(dayList)
  537. if lenDay <= 0 {
  538. return
  539. }
  540. var hcValue float64
  541. lastValueDeciamal := decimal.NewFromFloat(allDataList[index-1].Value) // 实际数据的最后一个值
  542. finalValueDeciamal := decimal.NewFromFloat(finalValue) // 给定的终止数据
  543. dayDecimal := decimal.NewFromInt(int64(lenDay)) // 需要作为分母的期数
  544. hcValue, _ = finalValueDeciamal.Sub(lastValueDeciamal).Div(dayDecimal).Float64() // 计算出来的环差值
  545. //获取后面的预测数据
  546. predictEdbInfoData = make([]*EdbInfoSearchData, 0)
  547. lastK := lenDay - 1 // 最后的日期
  548. for k, currentDate := range dayList {
  549. tmpK := index + k - 1 //上1期的值
  550. var val float64
  551. // 环差别值计算
  552. if k == lastK { //如果是最后一天,那么就用最终值,否则就计算
  553. val = finalValue
  554. } else {
  555. val = PredictHczDiv(allDataList[tmpK].Value, hcValue)
  556. }
  557. currentDateStr := currentDate.Format(utils.FormatDate)
  558. tmpData := &EdbInfoSearchData{
  559. EdbDataId: edbInfoId + 10000000000 + index + k,
  560. //EdbInfoId: edbInfoId,
  561. DataTime: currentDateStr,
  562. Value: val,
  563. //DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  564. }
  565. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  566. allDataList = append(allDataList, tmpData)
  567. existMap[currentDateStr] = val
  568. // 最大最小值
  569. if val < minValue {
  570. minValue = val
  571. }
  572. if val > maxValue {
  573. maxValue = val
  574. }
  575. }
  576. return
  577. }
  578. // SeasonConf 季节性规则的配置
  579. type SeasonConf struct {
  580. Calendar string `description:"公历、农历"`
  581. YearType int `description:"选择方式,1:连续N年;2:指定年份"`
  582. NValue int `description:"连续N年"`
  583. YearList []int `description:"指定年份列表"`
  584. }
  585. // GetChartPredictEdbInfoDataListByRuleSeason 根据 季节性 规则获取预测数据
  586. //
  587. // ETA预测规则:季节性
  588. // 已知选定指标A最近更新日期: 2022-12-6 200
  589. // 设置预测截止日期2023-01-06
  590. // 1、选择过去N年,N=3
  591. // 则过去N年为2021、2020、2019
  592. // 指标A日期 实际值 指标A日期
  593. // 2019/12/5 150 2019/12/6
  594. // 2020/12/5 180 2020/12/6
  595. // 2021/12/5 210 2021/12/6
  596. // 2019/12/31 200 2020/1/1
  597. // 2020/12/31 210 2021/1/1
  598. // 2021/12/31 250 2022/1/1
  599. //
  600. // 计算12.7预测值,求过去N年环差均值=[(100-150)+(160-180)+(250-210)]/3=-10
  601. // 则12.7预测值=12.6值+过去N年环差均值=200-10=190
  602. // 以此类推...
  603. //
  604. // 计算2023.1.2预测值,求过去N年环差均值=[(300-200)+(220-210)+(260-250)]/3=40
  605. // 则2023.1.2预测值=2023.1.1值+过去N年环差均值
  606. func GetChartPredictEdbInfoDataListByRuleSeason(edbInfoId int, yearsList []int, calendar string, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
  607. allDataList := make([]*EdbInfoSearchData, 0)
  608. allDataList = append(allDataList, realPredictEdbInfoData...)
  609. allDataList = append(allDataList, predictEdbInfoData...)
  610. newPredictEdbInfoData = predictEdbInfoData
  611. // 插值法数据处理
  612. handleDataMap := make(map[string]float64)
  613. _, err = HandleDataByLinearRegression(allDataList, handleDataMap)
  614. if err != nil {
  615. return
  616. }
  617. // 获取每个年份的日期数据需要平移的天数
  618. moveDayMap := make(map[int]int, 0) // 每个年份的春节公历
  619. {
  620. if calendar == "公历" {
  621. for _, year := range yearsList {
  622. moveDayMap[year] = 0 //公历就不平移了
  623. }
  624. } else {
  625. currentDay := time.Now()
  626. if currentDay.Month() >= 11 { //如果大于等于11月份,那么用的是下一年的春节
  627. currentDay = currentDay.AddDate(1, 0, 0)
  628. }
  629. currentYear := currentDay.Year()
  630. currentYearCjnl := fmt.Sprintf("%d-01-01", currentYear) //当年的春节农历
  631. currentYearCjgl := solarlunar.LunarToSolar(currentYearCjnl, false) //当年的春节公历
  632. currentYearCjglTime, tmpErr := time.ParseInLocation(utils.FormatDate, currentYearCjgl, time.Local)
  633. if tmpErr != nil {
  634. err = errors.New("当前春节公历日期转换失败:" + tmpErr.Error())
  635. return
  636. }
  637. // 指定的年份
  638. for _, year := range yearsList {
  639. tmpYearCjnl := fmt.Sprintf("%d-01-01", year) //指定年的春节农历
  640. tmpYearCjgl := solarlunar.LunarToSolar(tmpYearCjnl, false) //指定年的春节公历
  641. //moveDayList = append(moveDayList, 0) //公历就不平移了
  642. tmpYearCjglTime, tmpErr := time.ParseInLocation(utils.FormatDate, tmpYearCjgl, time.Local)
  643. if tmpErr != nil {
  644. err = errors.New(fmt.Sprintf("%d公历日期转换失败:%s", year, tmpErr.Error()))
  645. return
  646. }
  647. tmpCurrentYearCjglTime := currentYearCjglTime.AddDate(year-currentYear, 0, 0)
  648. moveDay := utils.GetTimeSubDay(tmpYearCjglTime, tmpCurrentYearCjglTime)
  649. moveDayMap[year] = moveDay //公历平移
  650. }
  651. }
  652. }
  653. index := len(allDataList)
  654. //获取后面的预测日期
  655. //获取后面的预测数据
  656. predictEdbInfoData = make([]*EdbInfoSearchData, 0)
  657. for k, currentDate := range dayList {
  658. // 如果遇到闰二月,如2.29,去掉该天数据
  659. if strings.Contains(currentDate.Format(utils.FormatDate), "02-29") {
  660. continue
  661. }
  662. tmpHistoryVal := decimal.NewFromFloat(0) //往期的差值总和
  663. tmpHistoryValNum := 0 // 往期差值计算的数量
  664. tmpLenAllDataList := len(allDataList)
  665. tmpK := tmpLenAllDataList - 1 //上1期数据的下标
  666. lastDayData := allDataList[tmpK] // 上1期的数据
  667. lastDayStr := lastDayData.DataTime
  668. lastDayVal := lastDayData.Value
  669. lastDay, tmpErr := time.ParseInLocation(utils.FormatDate, lastDayStr, time.Local)
  670. if tmpErr != nil {
  671. err = errors.New("获取上期日期转换失败:" + tmpErr.Error())
  672. }
  673. for _, year := range yearsList {
  674. moveDay := moveDayMap[year] //需要移动的天数
  675. var tmpHistoryCurrentVal, tmpHistoryLastVal float64
  676. var isFindHistoryCurrent, isFindHistoryLast bool //是否找到前几年的数据
  677. //前几年当日的日期
  678. tmpHistoryCurrentDate := currentDate.AddDate(year-currentDate.Year(), 0, -moveDay)
  679. for i := 0; i <= 35; i++ { // 前后35天找数据,找到最近的值,先向后面找,再往前面找
  680. tmpDate := tmpHistoryCurrentDate.AddDate(0, 0, i)
  681. if val, ok := handleDataMap[tmpDate.Format(utils.FormatDate)]; ok {
  682. tmpHistoryCurrentVal = val
  683. isFindHistoryCurrent = true
  684. break
  685. } else {
  686. tmpDate := tmpHistoryCurrentDate.AddDate(0, 0, -i)
  687. if val, ok := handleDataMap[tmpDate.Format(utils.FormatDate)]; ok {
  688. tmpHistoryCurrentVal = val
  689. isFindHistoryCurrent = true
  690. break
  691. }
  692. }
  693. }
  694. //前几年上一期的日期
  695. tmpHistoryLastDate := lastDay.AddDate(year-lastDay.Year(), 0, -moveDay)
  696. for i := 0; i <= 35; i++ { // 前后35天找数据,找到最近的值,先向后面找,再往前面找
  697. tmpDate := tmpHistoryLastDate.AddDate(0, 0, i)
  698. if val, ok := handleDataMap[tmpDate.Format(utils.FormatDate)]; ok {
  699. tmpHistoryLastVal = val
  700. isFindHistoryLast = true
  701. break
  702. } else {
  703. tmpDate := tmpHistoryLastDate.AddDate(0, 0, -i)
  704. if val, ok := handleDataMap[tmpDate.Format(utils.FormatDate)]; ok {
  705. tmpHistoryLastVal = val
  706. isFindHistoryLast = true
  707. break
  708. }
  709. }
  710. }
  711. // 如果两个日期对应的数据都找到了,那么计算两期的差值
  712. if isFindHistoryCurrent && isFindHistoryLast {
  713. af := decimal.NewFromFloat(tmpHistoryCurrentVal)
  714. bf := decimal.NewFromFloat(tmpHistoryLastVal)
  715. tmpHistoryVal = tmpHistoryVal.Add(af.Sub(bf))
  716. tmpHistoryValNum++
  717. }
  718. }
  719. //计算的差值与选择的年份数量不一致,那么当前日期不计算
  720. if tmpHistoryValNum != len(yearsList) {
  721. continue
  722. }
  723. lastDayValDec := decimal.NewFromFloat(lastDayVal)
  724. val, _ := tmpHistoryVal.Div(decimal.NewFromInt(int64(tmpHistoryValNum))).Add(lastDayValDec).RoundCeil(4).Float64()
  725. currentDateStr := currentDate.Format(utils.FormatDate)
  726. tmpData := &EdbInfoSearchData{
  727. EdbDataId: edbInfoId + 10000000000 + index + k,
  728. //EdbInfoId: edbInfoId,
  729. DataTime: currentDateStr,
  730. Value: val,
  731. //DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  732. }
  733. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  734. allDataList = append(allDataList, tmpData)
  735. existMap[currentDateStr] = val
  736. // 继续使用插值法补充新预测日期的数据之间的值
  737. _, err = HandleDataByLinearRegression([]*EdbInfoSearchData{
  738. lastDayData, tmpData,
  739. }, handleDataMap)
  740. if err != nil {
  741. return
  742. }
  743. // 最大最小值
  744. if val < minValue {
  745. minValue = val
  746. }
  747. if val > maxValue {
  748. maxValue = val
  749. }
  750. }
  751. return
  752. }
  753. // MoveAverageConf 移动平均同比规则的配置
  754. type MoveAverageConf struct {
  755. Year int `description:"指定年份"`
  756. NValue int `description:"N期的数据"`
  757. }
  758. // GetChartPredictEdbInfoDataListByRuleMoveAverageTb 根据 移动平均同比 规则获取预测数据
  759. //
  760. // ETA预测规则:季节性
  761. // 2、选择指定N年,N=3
  762. // 指定N年为2012、2015、2018
  763. // 指标A日期 实际值 指标A日期 实际值
  764. // 2012/12/5 150 2012/12/6 130
  765. // 2015/12/5 180 2015/12/6 150
  766. // 2018/12/5 210 2018/12/6 260
  767. // 2012/12/31 200 2013/1/1 200
  768. // 2015/12/31 210 2016/1/1 250
  769. // 2018/12/31 250 2019/1/1 270
  770. // 计算12.7预测值,求过去N年环差均值=[(130-150)+(150-180)+(290-210)]/3=10
  771. // 则12.7预测值=12.6值+过去N年环差均值=200+10=210
  772. // 以此类推...
  773. // 计算2023.1.2预测值,求过去N年环差均值=[(200-200)+(250-210)+(270-250)]/3=16.67
  774. // 则2023.1.2预测值=2023.1.1值+过去N年环差均值
  775. func GetChartPredictEdbInfoDataListByRuleMoveAverageTb(edbInfoId int, nValue, year int, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
  776. allDataList := make([]*EdbInfoSearchData, 0)
  777. allDataList = append(allDataList, realPredictEdbInfoData...)
  778. allDataList = append(allDataList, predictEdbInfoData...)
  779. newPredictEdbInfoData = predictEdbInfoData
  780. lenAllData := len(allDataList)
  781. if lenAllData < nValue || lenAllData <= 0 {
  782. return
  783. }
  784. if nValue <= 0 {
  785. return
  786. }
  787. // 分母
  788. decimalN := decimal.NewFromInt(int64(nValue))
  789. // 需要减去的年份
  790. subYear := year - dayList[0].Year()
  791. //获取后面的预测数据
  792. for k, currentDate := range dayList {
  793. tmpLenAllDataList := len(allDataList)
  794. tmpIndex := tmpLenAllDataList - 1 //上1期数据的下标
  795. averageDateList := make([]string, 0) //计算平均数的日期
  796. // 数据集合中的最后一个数据
  797. tmpDecimalVal := decimal.NewFromFloat(allDataList[tmpIndex].Value)
  798. averageDateList = append(averageDateList, allDataList[tmpIndex].DataTime)
  799. for tmpK := 1; tmpK < nValue; tmpK++ {
  800. tmpIndex2 := tmpIndex - tmpK //上N期的值
  801. tmpDecimalVal2 := decimal.NewFromFloat(allDataList[tmpIndex2].Value)
  802. tmpDecimalVal = tmpDecimalVal.Add(tmpDecimalVal2)
  803. averageDateList = append(averageDateList, allDataList[tmpIndex2].DataTime)
  804. }
  805. // 最近的N期平均值
  806. tmpAverageVal := tmpDecimalVal.Div(decimalN)
  807. var tmpHistoryCurrentVal float64 // 前几年当日的数据值
  808. var isFindHistoryCurrent, isFindHistoryLast bool //是否找到前几年的数据
  809. tmpHistoryDecimalVal := decimal.NewFromFloat(0) //前几年N期数据总值
  810. {
  811. // 前几年N期汇总期数
  812. tmpHistoryValNum := 0
  813. {
  814. //前几年当日的日期
  815. tmpHistoryCurrentDate := currentDate.AddDate(subYear, 0, 0)
  816. for i := 0; i <= 35; i++ { // 前后35天找数据,找到最近的值,先向后面找,再往前面找
  817. tmpDate := tmpHistoryCurrentDate.AddDate(0, 0, i)
  818. if val, ok := existMap[tmpDate.Format(utils.FormatDate)]; ok {
  819. tmpHistoryCurrentVal = val
  820. isFindHistoryCurrent = true
  821. break
  822. } else {
  823. tmpDate := tmpHistoryCurrentDate.AddDate(0, 0, -i)
  824. if val, ok := existMap[tmpDate.Format(utils.FormatDate)]; ok {
  825. tmpHistoryCurrentVal = val
  826. isFindHistoryCurrent = true
  827. break
  828. }
  829. }
  830. }
  831. }
  832. for _, averageDate := range averageDateList {
  833. lastDay, tmpErr := time.ParseInLocation(utils.FormatDate, averageDate, time.Local)
  834. if tmpErr != nil {
  835. err = tmpErr
  836. return
  837. }
  838. //前几年上一期的日期
  839. tmpHistoryLastDate := lastDay.AddDate(subYear, 0, 0)
  840. for i := 0; i <= 35; i++ { // 前后35天找数据,找到最近的值,先向后面找,再往前面找
  841. tmpDate := tmpHistoryLastDate.AddDate(0, 0, i)
  842. if val, ok := existMap[tmpDate.Format(utils.FormatDate)]; ok {
  843. tmpDecimalVal2 := decimal.NewFromFloat(val)
  844. tmpHistoryDecimalVal = tmpHistoryDecimalVal.Add(tmpDecimalVal2)
  845. tmpHistoryValNum++
  846. break
  847. } else {
  848. tmpDate := tmpHistoryLastDate.AddDate(0, 0, -i)
  849. if val, ok := existMap[tmpDate.Format(utils.FormatDate)]; ok {
  850. tmpDecimalVal2 := decimal.NewFromFloat(val)
  851. tmpHistoryDecimalVal = tmpHistoryDecimalVal.Add(tmpDecimalVal2)
  852. tmpHistoryValNum++
  853. break
  854. }
  855. }
  856. }
  857. }
  858. // 汇总期数与配置的N期数量一致
  859. if tmpHistoryValNum == nValue {
  860. isFindHistoryLast = true
  861. }
  862. }
  863. // 如果没有找到前几年的汇总数据,或者没有找到前几年当日的数据,那么退出当前循环,进入下一循环
  864. if !isFindHistoryLast || !isFindHistoryCurrent {
  865. continue
  866. }
  867. // 计算最近N期平均值
  868. tmpHistoryAverageVal := tmpHistoryDecimalVal.Div(decimalN)
  869. // 计算最近N期同比值
  870. tbVal := tmpAverageVal.Div(tmpHistoryAverageVal)
  871. // 预测值结果 = 同比年份同期值(tmpHistoryCurrentVal的值)* 同比值(tbVal的值)
  872. val, _ := decimal.NewFromFloat(tmpHistoryCurrentVal).Mul(tbVal).RoundCeil(4).Float64()
  873. currentDateStr := currentDate.Format(utils.FormatDate)
  874. tmpData := &EdbInfoSearchData{
  875. EdbDataId: edbInfoId + 10000000000 + lenAllData + k,
  876. //EdbInfoId: edbInfoId,
  877. DataTime: currentDateStr,
  878. Value: val,
  879. //DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  880. }
  881. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  882. allDataList = append(allDataList, tmpData)
  883. existMap[currentDateStr] = val
  884. // 最大最小值
  885. if val < minValue {
  886. minValue = val
  887. }
  888. if val > maxValue {
  889. maxValue = val
  890. }
  891. }
  892. return
  893. }
  894. // GetChartPredictEdbInfoDataListByRuleTbzscz 根据 同比增速差值 规则获取预测数据
  895. // 同比增速差值计算方式:
  896. // 1、首先计算出所选指标实际最新日期值的同比增速:(本期数值-同期数值)÷同期数值*100%
  897. // 2、根据预测截止日期的同比增速终值、最新日期值的同比增速、与最新日期距离截止日期的期数,计算出到截止日期为止的每一期的同比增速。(等差规则计算每一期的同比增速,结合去年同期值,计算出每一期的同比预测值)。公差=(末项-首项)÷(n-1),an=a1+(n-1)d,(n为正整数,n大于等于2)
  898. // 3、根据去年同期值和未来每一期的同比增速值,求出同比预测值,同比预测值=同期值*(1+同比增速)
  899. // 同比增速差值:计算最新数据的同比增速((本期数值-同期数值)÷同期数值*100%),结合同比增速终值与期数,计算每一期同比增速,进而求出同比预测值。
  900. //
  901. // 例:如上图所示指标,(1)最新日期值2022-12-31 141175 ,结合同期值,计算同比增速;
  902. // (2)同比增速终值,若为50%, 预测日期为2023-03-31,则根据(1)中的同比增速值与同比增速终值,计算出中间两期的同比增速;
  903. // (3)求出每一期的预测同比值,预测同比值=同期值*(1+同比增速)
  904. func GetChartPredictEdbInfoDataListByRuleTbzscz(edbInfoId int, tbEndValue float64, dayList []time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  905. allDataList := make([]*EdbInfoSearchData, 0)
  906. allDataList = append(allDataList, realPredictEdbInfoData...)
  907. allDataList = append(allDataList, predictEdbInfoData...)
  908. newPredictEdbInfoData = predictEdbInfoData
  909. index := len(allDataList)
  910. // 获取近期数据的同比值
  911. if index <= 0 {
  912. return
  913. }
  914. lastData := allDataList[index-1]
  915. lastDayTime, _ := time.ParseInLocation(utils.FormatDate, lastData.DataTime, time.Local)
  916. var lastTb decimal.Decimal // 计算最新数据与上一期的数据同比值
  917. {
  918. //上一年的日期
  919. preDate := lastDayTime.AddDate(-1, 0, 0)
  920. preDateStr := preDate.Format(utils.FormatDate)
  921. if preValue, ok := existMap[preDateStr]; ok { //上一年同期找到
  922. lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
  923. } else {
  924. switch frequency {
  925. case "月度":
  926. //向上和向下,各找一个月
  927. nextDateDay := preDate
  928. preDateDay := preDate
  929. for i := 0; i <= 35; i++ {
  930. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  931. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  932. lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
  933. break
  934. } else {
  935. preDateDayStr := preDateDay.Format(utils.FormatDate)
  936. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  937. lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
  938. break
  939. }
  940. }
  941. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  942. preDateDay = preDateDay.AddDate(0, 0, -1)
  943. }
  944. case "季度", "年度":
  945. if preValue, ok := existMap[preDateStr]; ok { //上一年同期->下一个月找到
  946. lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
  947. break
  948. }
  949. default:
  950. nextDateDay := preDate
  951. preDateDay := preDate
  952. for i := 0; i < 35; i++ {
  953. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  954. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  955. lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
  956. break
  957. } else {
  958. preDateDayStr := preDateDay.Format(utils.FormatDate)
  959. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  960. lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
  961. break
  962. } else {
  963. //fmt.Println("pre not find:", preDateStr, "i:", i)
  964. }
  965. }
  966. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  967. preDateDay = preDateDay.AddDate(0, 0, -1)
  968. }
  969. }
  970. }
  971. }
  972. //获取后面的预测数据
  973. lenDay := len(dayList)
  974. tbEndValueDecimal := decimal.NewFromFloat(tbEndValue)
  975. avgTbVal := tbEndValueDecimal.Sub(lastTb).Div(decimal.NewFromInt(int64(lenDay)))
  976. predictEdbInfoData = make([]*EdbInfoSearchData, 0)
  977. for k, currentDate := range dayList {
  978. var tbValue decimal.Decimal
  979. if k == lenDay-1 { // 如果是最后的日期了,那么就用终值去计算
  980. tbValue = tbEndValueDecimal.Add(decimal.NewFromInt(1))
  981. } else { // 最近数据的同比值 + (平均增值乘以当前期数)
  982. tbValue = lastTb.Add(avgTbVal.Mul(decimal.NewFromInt(int64(k + 1)))).Add(decimal.NewFromInt(1))
  983. }
  984. tmpData := &EdbInfoSearchData{
  985. EdbDataId: edbInfoId + 100000 + index + k,
  986. //EdbInfoId: edbInfoId,
  987. DataTime: currentDate.Format(utils.FormatDate),
  988. //Value: dataValue,
  989. //DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  990. }
  991. var val float64
  992. var calculateStatus bool //计算结果
  993. //currentItem := existMap[av]
  994. //上一年的日期
  995. preDate := currentDate.AddDate(-1, 0, 0)
  996. preDateStr := preDate.Format(utils.FormatDate)
  997. if preValue, ok := existMap[preDateStr]; ok { //上一年同期找到
  998. val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).RoundCeil(4).Float64()
  999. calculateStatus = true
  1000. } else {
  1001. switch frequency {
  1002. case "月度":
  1003. //向上和向下,各找一个月
  1004. nextDateDay := preDate
  1005. preDateDay := preDate
  1006. for i := 0; i <= 35; i++ {
  1007. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  1008. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  1009. val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).RoundCeil(4).Float64()
  1010. calculateStatus = true
  1011. break
  1012. } else {
  1013. preDateDayStr := preDateDay.Format(utils.FormatDate)
  1014. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  1015. val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).RoundCeil(4).Float64()
  1016. calculateStatus = true
  1017. break
  1018. }
  1019. }
  1020. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  1021. preDateDay = preDateDay.AddDate(0, 0, -1)
  1022. }
  1023. case "季度", "年度":
  1024. if preValue, ok := existMap[preDateStr]; ok { //上一年同期->下一个月找到
  1025. val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).RoundCeil(4).Float64()
  1026. calculateStatus = true
  1027. break
  1028. }
  1029. default:
  1030. nextDateDay := preDate
  1031. preDateDay := preDate
  1032. for i := 0; i < 35; i++ {
  1033. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  1034. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  1035. val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).RoundCeil(4).Float64()
  1036. calculateStatus = true
  1037. break
  1038. } else {
  1039. preDateDayStr := preDateDay.Format(utils.FormatDate)
  1040. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  1041. val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).RoundCeil(4).Float64()
  1042. calculateStatus = true
  1043. break
  1044. } else {
  1045. //fmt.Println("pre not find:", preDateStr, "i:", i)
  1046. }
  1047. }
  1048. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  1049. preDateDay = preDateDay.AddDate(0, 0, -1)
  1050. }
  1051. }
  1052. }
  1053. if calculateStatus {
  1054. tmpData.Value = val
  1055. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  1056. allDataList = append(allDataList, tmpData)
  1057. existMap[tmpData.DataTime] = val
  1058. // 最大最小值
  1059. if val < minValue {
  1060. minValue = val
  1061. }
  1062. if val > maxValue {
  1063. maxValue = val
  1064. }
  1065. }
  1066. }
  1067. return
  1068. }
  1069. // RuleLineNhConf 一元线性拟合规则的配置
  1070. type RuleLineNhConf struct {
  1071. StartDate string `description:"开始日期"`
  1072. EndDate string `description:"结束日期"`
  1073. MoveDay int `description:"移动天数"`
  1074. EdbInfoId int `description:"指标id"`
  1075. }
  1076. // GetChartPredictEdbInfoDataListByRuleLineNh 根据 一元线性拟合 的计算规则获取预测数据
  1077. //
  1078. // 选择被预测的指标B(作为自变量,非预测指标),选择指标A(作为因变量,可以是基础指标和预测指标)
  1079. // 2、选择拟合时间段,起始日期至今或指定时间段,选择至今,在计算时截止到指标B的最新日期
  1080. // 3、设定A领先B时间(天),正整数、负整数、0
  1081. // 4、调用拟合残差的数据预处理和算法,给出拟合方程Y=aX+b的系数a,b
  1082. // 5、指标A代入拟合方程得到拟合预测指标B',拟合预测指标使用指标B的频度,在指标B的实际值后面连接拟合预测指标B'对应日期的预测值
  1083. //
  1084. // 注:选择预测截止日期,若所选日期 ≤ 指标A设置领先后的日期序列,则预测指标日期最新日期有值(在指标B'的有值范围内);若所选日期 > 指标A设置领先后的日期序列,则预测指标只到指标A领先后的日期序列(超出指标B'的有值范围,最多到指标B'的最新值);指标A、B更新后,更新预测指标
  1085. func GetChartPredictEdbInfoDataListByRuleLineNh(edbInfoId int, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, newNhccDataMap, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
  1086. allDataList := make([]*EdbInfoSearchData, 0)
  1087. allDataList = append(allDataList, realPredictEdbInfoData...)
  1088. allDataList = append(allDataList, predictEdbInfoData...)
  1089. newPredictEdbInfoData = predictEdbInfoData
  1090. lenAllData := len(allDataList)
  1091. if lenAllData <= 0 {
  1092. return
  1093. }
  1094. for k, currentDate := range dayList {
  1095. // 动态拟合残差值数据
  1096. currentDateStr := currentDate.Format(utils.FormatDate)
  1097. val, ok := newNhccDataMap[currentDateStr]
  1098. if !ok {
  1099. continue
  1100. }
  1101. tmpData := &EdbInfoSearchData{
  1102. EdbDataId: edbInfoId + 100000 + lenAllData + k,
  1103. //EdbInfoId: edbInfoId,
  1104. DataTime: currentDateStr,
  1105. Value: val,
  1106. //DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  1107. }
  1108. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  1109. allDataList = append(allDataList, tmpData)
  1110. existMap[currentDateStr] = val
  1111. // 最大最小值
  1112. if val < minValue {
  1113. minValue = val
  1114. }
  1115. if val > maxValue {
  1116. maxValue = val
  1117. }
  1118. }
  1119. return
  1120. }
  1121. // getCalculateNhccData 获取计算出来的 拟合残差 数据
  1122. func getCalculateNhccData(secondDataList []*EdbInfoSearchData, ruleConf RuleLineNhConf) (newBDataMap map[string]float64, err error, errMsg string) {
  1123. firstEdbInfoId := ruleConf.EdbInfoId
  1124. moveDay := ruleConf.MoveDay
  1125. startDate, _ := time.ParseInLocation(utils.FormatDate, ruleConf.StartDate, time.Local)
  1126. endDate, _ := time.ParseInLocation(utils.FormatDate, ruleConf.EndDate, time.Local)
  1127. //查询当前指标现有的数据
  1128. edbInfo, err := GetEdbInfoById(firstEdbInfoId)
  1129. if err != nil {
  1130. return
  1131. }
  1132. //第一个指标
  1133. aDataList := make([]EdbInfoSearchData, 0)
  1134. aDataMap := make(map[string]float64)
  1135. {
  1136. //第一个指标的数据列表
  1137. var firstDataList []*EdbInfoSearchData
  1138. switch edbInfo.EdbInfoType {
  1139. case 0:
  1140. var condition string
  1141. var pars []interface{}
  1142. condition += " AND edb_info_id=? "
  1143. pars = append(pars, edbInfo.EdbInfoId)
  1144. //获取来源指标的数据
  1145. firstDataList, err = GetEdbDataListAll(condition, pars, edbInfo.Source, 1)
  1146. case 1:
  1147. firstDataList, err = GetPredictEdbDataListAllByStartDate(edbInfo, 1, "")
  1148. default:
  1149. err = errors.New(fmt.Sprint("获取失败,指标类型异常", edbInfo.EdbInfoType))
  1150. }
  1151. if err != nil {
  1152. return
  1153. }
  1154. aDataList, aDataMap = handleNhccData(firstDataList, moveDay)
  1155. }
  1156. //第二个指标
  1157. bDataList := make([]EdbInfoSearchData, 0)
  1158. bDataMap := make(map[string]float64)
  1159. {
  1160. bDataList, bDataMap = handleNhccData(secondDataList, 0)
  1161. }
  1162. if len(aDataList) <= 0 {
  1163. errMsg = `自变量没有数据`
  1164. err = errors.New(errMsg)
  1165. return
  1166. }
  1167. if len(bDataList) <= 0 {
  1168. errMsg = `因变量没有数据`
  1169. err = errors.New(errMsg)
  1170. return
  1171. }
  1172. // 拟合残差计算的结束日期判断
  1173. {
  1174. endAData := aDataList[len(aDataList)-1]
  1175. tmpEndDate, tmpErr := time.ParseInLocation(utils.FormatDate, endAData.DataTime, time.Local)
  1176. if tmpErr != nil {
  1177. err = tmpErr
  1178. return
  1179. }
  1180. // 如果A指标的最新数据日期早于拟合残差的结束日期,那么就用A指标的最新数据日期
  1181. if tmpEndDate.Before(endDate) {
  1182. endDate = tmpEndDate
  1183. }
  1184. endBData := bDataList[len(bDataList)-1]
  1185. tmpEndDate, tmpErr = time.ParseInLocation(utils.FormatDate, endBData.DataTime, time.Local)
  1186. if tmpErr != nil {
  1187. err = tmpErr
  1188. return
  1189. }
  1190. // 如果B指标的最新数据日期早于拟合残差的结束日期,那么就用A指标的最新数据日期
  1191. if tmpEndDate.Before(endDate) {
  1192. endDate = tmpEndDate
  1193. }
  1194. }
  1195. // 计算线性方程公式
  1196. var a, b float64
  1197. {
  1198. coordinateData := make([]utils.Coordinate, 0)
  1199. for i := startDate; i.Before(endDate) || i.Equal(endDate); i = i.AddDate(0, 0, 1) {
  1200. dateStr := i.Format(utils.FormatDate)
  1201. xValue, ok := aDataMap[dateStr]
  1202. if !ok {
  1203. errMsg = "自变量日期:" + dateStr + "数据异常,导致计算线性方程公式失败"
  1204. err = errors.New(errMsg)
  1205. return
  1206. }
  1207. yValue, ok := bDataMap[dateStr]
  1208. if !ok {
  1209. errMsg = "因变量日期:" + dateStr + "数据异常,导致计算线性方程公式失败"
  1210. err = errors.New(errMsg)
  1211. return
  1212. }
  1213. tmpCoordinate := utils.Coordinate{
  1214. X: xValue,
  1215. Y: yValue,
  1216. }
  1217. coordinateData = append(coordinateData, tmpCoordinate)
  1218. }
  1219. a, b = utils.GetLinearResult(coordinateData)
  1220. }
  1221. if math.IsNaN(a) || math.IsNaN(b) {
  1222. errMsg = "线性方程公式生成失败"
  1223. err = errors.New(errMsg)
  1224. return
  1225. }
  1226. //fmt.Println("a:", a, ";======b:", b)
  1227. //计算B’
  1228. newBDataMap = make(map[string]float64)
  1229. {
  1230. //B’=aA+b
  1231. aDecimal := decimal.NewFromFloat(a)
  1232. bDecimal := decimal.NewFromFloat(b)
  1233. for _, aData := range aDataList {
  1234. xDecimal := decimal.NewFromFloat(aData.Value)
  1235. val, _ := aDecimal.Mul(xDecimal).Add(bDecimal).RoundCeil(4).Float64()
  1236. newBDataMap[aData.DataTime] = val
  1237. }
  1238. }
  1239. return
  1240. }