predict_edb_info_rule.go 63 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699
  1. package models
  2. import (
  3. "encoding/json"
  4. "errors"
  5. "fmt"
  6. "github.com/nosixtools/solarlunar"
  7. "github.com/shopspring/decimal"
  8. "hongze/hongze_edb_lib/utils"
  9. "math"
  10. "strings"
  11. "time"
  12. )
  13. // GetChartPredictEdbInfoDataListByRule1 根据规则1获取预测数据
  14. func GetChartPredictEdbInfoDataListByRule1(edbInfoId int, dataValue float64, dayList []time.Time, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData) {
  15. newPredictEdbInfoData = predictEdbInfoData
  16. //获取后面的预测数据
  17. predictEdbInfoData = make([]*EdbInfoSearchData, 0)
  18. for k, v := range dayList {
  19. newPredictEdbInfoData = append(newPredictEdbInfoData, &EdbInfoSearchData{
  20. EdbDataId: edbInfoId + 10000000000 + k,
  21. DataTime: v.Format(utils.FormatDate),
  22. Value: dataValue,
  23. })
  24. existMap[v.Format(utils.FormatDate)] = dataValue
  25. }
  26. return
  27. }
  28. // GetChartPredictEdbInfoDataListByRuleTb 根据同比值规则获取预测数据
  29. // 2.1 同比: 在未来某一个时间段内,给定一个固定的同比增速a,用去年同期值X乘以同比增速(1+a),得到预测值Y=X(1+a)
  30. // 例: 今年1-3月值,100,100,120。给定同比增速a=0.1,则明年1-3月预测值为: 100*1.1=110,100*1.1=110,120*1.1=132。
  31. func GetChartPredictEdbInfoDataListByRuleTb(edbInfoId int, tbValue float64, dayList []time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  32. allDataList := make([]*EdbInfoSearchData, 0)
  33. allDataList = append(allDataList, realPredictEdbInfoData...)
  34. allDataList = append(allDataList, predictEdbInfoData...)
  35. newPredictEdbInfoData = predictEdbInfoData
  36. index := len(allDataList)
  37. //获取后面的预测数据
  38. predictEdbInfoData = make([]*EdbInfoSearchData, 0)
  39. for k, currentDate := range dayList {
  40. tmpData := &EdbInfoSearchData{
  41. EdbDataId: edbInfoId + 10000000000 + index + k,
  42. DataTime: currentDate.Format(utils.FormatDate),
  43. //Value: dataValue,
  44. }
  45. var val float64
  46. var calculateStatus bool //计算结果
  47. //currentItem := existMap[av]
  48. //上一年的日期
  49. preDate := currentDate.AddDate(-1, 0, 0)
  50. preDateStr := preDate.Format(utils.FormatDate)
  51. if preValue, ok := existMap[preDateStr]; ok { //上一年同期找到
  52. val = PredictTbzDiv(preValue, tbValue)
  53. calculateStatus = true
  54. } else {
  55. switch frequency {
  56. case "月度":
  57. //向上和向下,各找一个月
  58. nextDateDay := preDate
  59. preDateDay := preDate
  60. for i := 0; i <= 35; i++ {
  61. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  62. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  63. val = PredictTbzDiv(preValue, tbValue)
  64. calculateStatus = true
  65. break
  66. } else {
  67. preDateDayStr := preDateDay.Format(utils.FormatDate)
  68. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  69. val = PredictTbzDiv(preValue, tbValue)
  70. calculateStatus = true
  71. break
  72. }
  73. }
  74. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  75. preDateDay = preDateDay.AddDate(0, 0, -1)
  76. }
  77. case "季度", "年度":
  78. if preValue, ok := existMap[preDateStr]; ok { //上一年同期->下一个月找到
  79. val = PredictTbzDiv(preValue, tbValue)
  80. calculateStatus = true
  81. break
  82. }
  83. default:
  84. nextDateDay := preDate
  85. preDateDay := preDate
  86. for i := 0; i < 35; i++ {
  87. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  88. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  89. val = PredictTbzDiv(preValue, tbValue)
  90. calculateStatus = true
  91. break
  92. } else {
  93. preDateDayStr := preDateDay.Format(utils.FormatDate)
  94. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  95. val = PredictTbzDiv(preValue, tbValue)
  96. calculateStatus = true
  97. break
  98. } else {
  99. //fmt.Println("pre not find:", preDateStr, "i:", i)
  100. }
  101. }
  102. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  103. preDateDay = preDateDay.AddDate(0, 0, -1)
  104. }
  105. }
  106. }
  107. if calculateStatus {
  108. tmpData.Value = val
  109. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  110. allDataList = append(allDataList, tmpData)
  111. existMap[tmpData.DataTime] = val
  112. // 最大最小值
  113. if val < minValue {
  114. minValue = val
  115. }
  116. if val > maxValue {
  117. maxValue = val
  118. }
  119. }
  120. }
  121. return
  122. }
  123. // PredictTbzDiv 同比值计算
  124. // @params a float64 去年同期值
  125. // @params b float64 固定同比增速
  126. func PredictTbzDiv(a, b float64) (result float64) {
  127. if b != 0 {
  128. // 去年同期值
  129. af := decimal.NewFromFloat(a)
  130. // 同比增速
  131. bf := decimal.NewFromFloat(b)
  132. // 默认1
  133. cf := decimal.NewFromFloat(1)
  134. // 总增速
  135. val := bf.Add(cf)
  136. // 计算
  137. result, _ = val.Mul(af).RoundCeil(4).Float64()
  138. } else {
  139. result = 0
  140. }
  141. return
  142. }
  143. // GetChartPredictEdbInfoDataListByRuleTc 根据同差值规则获取预测数据
  144. // 2.2 同差: 在未来某一个时间段内,给定一个固定的同比增加值a,用去年同期值X加上同比增加值A,得到预测值Y=X+a
  145. // 例: 今年1-3月值,100,100,120。给定同比增加值a=10,则明年1-3月预测值为: 100+10=110,100+10=110,120+10=130
  146. func GetChartPredictEdbInfoDataListByRuleTc(edbInfoId int, tcValue float64, dayList []time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  147. allDataList := make([]*EdbInfoSearchData, 0)
  148. allDataList = append(allDataList, realPredictEdbInfoData...)
  149. allDataList = append(allDataList, predictEdbInfoData...)
  150. newPredictEdbInfoData = predictEdbInfoData
  151. index := len(allDataList)
  152. //获取后面的预测数据
  153. predictEdbInfoData = make([]*EdbInfoSearchData, 0)
  154. for k, currentDate := range dayList {
  155. tmpData := &EdbInfoSearchData{
  156. EdbDataId: edbInfoId + 10000000000 + index + k,
  157. DataTime: currentDate.Format(utils.FormatDate),
  158. //Value: dataValue,
  159. }
  160. var val float64
  161. var calculateStatus bool //计算结果
  162. //currentItem := existMap[av]
  163. //上一年的日期
  164. preDate := currentDate.AddDate(-1, 0, 0)
  165. preDateStr := preDate.Format(utils.FormatDate)
  166. if preValue, ok := existMap[preDateStr]; ok { //上一年同期找到
  167. val = PredictTczDiv(preValue, tcValue)
  168. calculateStatus = true
  169. } else {
  170. switch frequency {
  171. case "月度":
  172. //向上和向下,各找一个月
  173. nextDateDay := preDate
  174. preDateDay := preDate
  175. for i := 0; i <= 35; i++ {
  176. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  177. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  178. val = PredictTczDiv(preValue, tcValue)
  179. calculateStatus = true
  180. break
  181. } else {
  182. preDateDayStr := preDateDay.Format(utils.FormatDate)
  183. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  184. val = PredictTczDiv(preValue, tcValue)
  185. calculateStatus = true
  186. break
  187. }
  188. }
  189. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  190. preDateDay = preDateDay.AddDate(0, 0, -1)
  191. }
  192. case "季度", "年度":
  193. if preValue, ok := existMap[preDateStr]; ok { //上一年同期->下一个月找到
  194. val = PredictTczDiv(preValue, tcValue)
  195. calculateStatus = true
  196. break
  197. }
  198. default:
  199. nextDateDay := preDate
  200. preDateDay := preDate
  201. for i := 0; i < 35; i++ {
  202. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  203. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  204. val = PredictTczDiv(preValue, tcValue)
  205. calculateStatus = true
  206. break
  207. } else {
  208. preDateDayStr := preDateDay.Format(utils.FormatDate)
  209. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  210. val = PredictTczDiv(preValue, tcValue)
  211. calculateStatus = true
  212. break
  213. } else {
  214. //fmt.Println("pre not find:", preDateStr, "i:", i)
  215. }
  216. }
  217. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  218. preDateDay = preDateDay.AddDate(0, 0, -1)
  219. }
  220. }
  221. }
  222. if calculateStatus {
  223. tmpData.Value = val
  224. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  225. allDataList = append(allDataList, tmpData)
  226. existMap[tmpData.DataTime] = val
  227. // 最大最小值
  228. if val < minValue {
  229. minValue = val
  230. }
  231. if val > maxValue {
  232. maxValue = val
  233. }
  234. }
  235. }
  236. return
  237. }
  238. // PredictTczDiv 环差值计算
  239. // @params a float64 上一期值
  240. // @params b float64 固定的环比增加值
  241. func PredictTczDiv(a, b float64) (result float64) {
  242. if b != 0 {
  243. // 上一期值
  244. af := decimal.NewFromFloat(a)
  245. // 固定的环比增加值
  246. bf := decimal.NewFromFloat(b)
  247. // 计算
  248. result, _ = af.Add(bf).RoundCeil(4).Float64()
  249. } else {
  250. result = 0
  251. }
  252. return
  253. }
  254. // GetChartPredictEdbInfoDataListByRuleHb 根据环比值规则获取预测数据
  255. // 环比:在未来某一个时间段内,给定一个固定的环比增速a,用上一期值X乘以环比增速(1+a),得到预测值Y=X(1+a)
  256. // 例: 最近1期值为100,给定环比增速a=0.2,则未来3期预测值为: 100*1.2=120,120*1.2=144,144*1.2=172.8
  257. func GetChartPredictEdbInfoDataListByRuleHb(edbInfoId int, hbValue float64, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  258. allDataList := make([]*EdbInfoSearchData, 0)
  259. allDataList = append(allDataList, realPredictEdbInfoData...)
  260. allDataList = append(allDataList, predictEdbInfoData...)
  261. newPredictEdbInfoData = predictEdbInfoData
  262. index := len(allDataList)
  263. //获取后面的预测数据
  264. for k, currentDate := range dayList {
  265. tmpK := index + k - 1 //上1期的值
  266. // 环比值计算
  267. val := PredictHbzDiv(allDataList[tmpK].Value, hbValue)
  268. currentDateStr := currentDate.Format(utils.FormatDate)
  269. tmpData := &EdbInfoSearchData{
  270. EdbDataId: edbInfoId + 10000000000 + index + k,
  271. DataTime: currentDateStr,
  272. Value: val,
  273. }
  274. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  275. allDataList = append(allDataList, tmpData)
  276. existMap[currentDateStr] = val
  277. // 最大最小值
  278. if val < minValue {
  279. minValue = val
  280. }
  281. if val > maxValue {
  282. maxValue = val
  283. }
  284. }
  285. return
  286. }
  287. // PredictHbzDiv 环比值计算
  288. // @params a float64 上一期值
  289. // @params b float64 固定的环比增速
  290. func PredictHbzDiv(a, b float64) (result float64) {
  291. if b != 0 {
  292. // 上一期值
  293. af := decimal.NewFromFloat(a)
  294. // 固定的环比增速
  295. bf := decimal.NewFromFloat(b)
  296. // 默认1
  297. cf := decimal.NewFromFloat(1)
  298. // 总增速
  299. val := bf.Add(cf)
  300. // 计算
  301. result, _ = val.Mul(af).RoundCeil(4).Float64()
  302. } else {
  303. result = 0
  304. }
  305. return
  306. }
  307. // GetChartPredictEdbInfoDataListByRuleHc 根据环差值规则获取预测数据
  308. // 2.4 环差:在未来某一个时间段内,给定一个固定的环比增加值a,用上一期值X加上环比增加值a,得到预测值Y=X+a
  309. // 例: 最近1期值为100,给定环比增加值a=10,则未来3期预测值为: 100+10=110,110+10=120,120+10=130
  310. func GetChartPredictEdbInfoDataListByRuleHc(edbInfoId int, hcValue float64, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  311. allDataList := make([]*EdbInfoSearchData, 0)
  312. allDataList = append(allDataList, realPredictEdbInfoData...)
  313. allDataList = append(allDataList, predictEdbInfoData...)
  314. newPredictEdbInfoData = predictEdbInfoData
  315. index := len(allDataList)
  316. //获取后面的预测数据
  317. for k, currentDate := range dayList {
  318. tmpK := index + k - 1 //上1期的值
  319. // 环差别值计算
  320. val := PredictHczDiv(allDataList[tmpK].Value, hcValue)
  321. currentDateStr := currentDate.Format(utils.FormatDate)
  322. tmpData := &EdbInfoSearchData{
  323. EdbDataId: edbInfoId + 10000000000 + index + k,
  324. DataTime: currentDateStr,
  325. Value: val,
  326. }
  327. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  328. allDataList = append(allDataList, tmpData)
  329. existMap[currentDateStr] = val
  330. // 最大最小值
  331. if val < minValue {
  332. minValue = val
  333. }
  334. if val > maxValue {
  335. maxValue = val
  336. }
  337. }
  338. return
  339. }
  340. // PredictHczDiv 环差值计算
  341. // @params a float64 上一期值
  342. // @params b float64 固定的环比增加值
  343. func PredictHczDiv(a, b float64) (result float64) {
  344. if b != 0 {
  345. // 上一期值
  346. af := decimal.NewFromFloat(a)
  347. // 固定的环比增加值
  348. bf := decimal.NewFromFloat(b)
  349. // 计算
  350. result, _ = af.Add(bf).RoundCeil(4).Float64()
  351. } else {
  352. result = 0
  353. }
  354. return
  355. }
  356. // GetChartPredictEdbInfoDataListByRuleNMoveMeanValue 根据N期移动均值规则获取预测数据
  357. // 2.5 N期移动均值:在未来某一个时间段内,下一期值等于过去N期值得平均值。
  358. // 例:最近3期值(N=3),为95,98,105则未来第1期值为 1/3*(95+98+105)=99.33, 未来第2期值为 1/3*(98+105+99.33)=100.78依次类推。
  359. func GetChartPredictEdbInfoDataListByRuleNMoveMeanValue(edbInfoId int, nValue int, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  360. allDataList := make([]*EdbInfoSearchData, 0)
  361. allDataList = append(allDataList, realPredictEdbInfoData...)
  362. allDataList = append(allDataList, predictEdbInfoData...)
  363. newPredictEdbInfoData = predictEdbInfoData
  364. lenAllData := len(allDataList)
  365. if lenAllData < nValue || lenAllData <= 0 {
  366. return
  367. }
  368. if nValue <= 0 {
  369. return
  370. }
  371. // 分母
  372. decimalN := decimal.NewFromInt(int64(nValue))
  373. //获取后面的预测数据
  374. for k, currentDate := range dayList {
  375. tmpIndex := lenAllData + k - 1 //上1期的值
  376. // 数据集合中的最后一个数据
  377. tmpDecimalVal := decimal.NewFromFloat(allDataList[tmpIndex].Value)
  378. for tmpK := 2; tmpK <= nValue; tmpK++ {
  379. tmpIndex2 := tmpIndex - tmpK //上N期的值
  380. tmpDecimalVal2 := decimal.NewFromFloat(allDataList[tmpIndex2].Value)
  381. tmpDecimalVal = tmpDecimalVal.Add(tmpDecimalVal2)
  382. }
  383. // N期移动均值计算
  384. val, _ := tmpDecimalVal.Div(decimalN).RoundCeil(4).Float64()
  385. currentDateStr := currentDate.Format(utils.FormatDate)
  386. tmpData := &EdbInfoSearchData{
  387. EdbDataId: edbInfoId + 10000000000 + lenAllData + k,
  388. DataTime: currentDateStr,
  389. Value: val,
  390. }
  391. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  392. allDataList = append(allDataList, tmpData)
  393. existMap[currentDateStr] = val
  394. // 最大最小值
  395. if val < minValue {
  396. minValue = val
  397. }
  398. if val > maxValue {
  399. maxValue = val
  400. }
  401. }
  402. return
  403. }
  404. // GetChartPredictEdbInfoDataListByRuleNLinearRegression 根据N期移动均值规则获取预测数据
  405. // 2.6N期段线性外推值:给出过去N期值所确定的线性回归方程(Y=aX+b)在未来一段时间内的推算值。回归方程虽然比较复杂,但各种编程语言应该都有现成的模块或函数,应该无需自己编写。
  406. // 例1:过去5期值(N=5)分别为:3,5,7,9,11(每两期值之间的时间间隔相等)。那么按照线性回归方程推算,未来三期的预测值是:13,15,17。
  407. //
  408. // 例2:过去6期值(N=6)分别为:3,3,5,7,9,11(每两期值之间的时间间隔相等)。那么按照线性回归方程推算,未来三期的预测值是:12.33,14.05,15.76。例1和例2的区别在于,多加了一期数据,导致回归方程发生改变,从而预测值不同。
  409. func GetChartPredictEdbInfoDataListByRuleNLinearRegression(edbInfoId int, nValue int, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
  410. //var errMsg string
  411. //defer func() {
  412. // if errMsg != `` {
  413. // go alarm_msg.SendAlarmMsg("更新上海的token失败;ERR:"+err.Error(), 3)
  414. // }
  415. //}()
  416. allDataList := make([]*EdbInfoSearchData, 0)
  417. allDataList = append(allDataList, realPredictEdbInfoData...)
  418. allDataList = append(allDataList, predictEdbInfoData...)
  419. newPredictEdbInfoData = predictEdbInfoData
  420. lenAllData := len(allDataList)
  421. if lenAllData < nValue || lenAllData <= 0 {
  422. return
  423. }
  424. if nValue <= 1 {
  425. return
  426. }
  427. //获取后面的预测数据
  428. // 获取线性方程公式的a、b的值
  429. coordinateData := make([]utils.Coordinate, 0)
  430. for tmpK := nValue; tmpK > 0; tmpK-- {
  431. tmpIndex2 := lenAllData - tmpK //上N期的值
  432. tmpCoordinate := utils.Coordinate{
  433. X: float64(nValue - tmpK + 1),
  434. Y: allDataList[tmpIndex2].Value,
  435. }
  436. coordinateData = append(coordinateData, tmpCoordinate)
  437. }
  438. a, b := utils.GetLinearResult(coordinateData)
  439. if math.IsNaN(a) || math.IsNaN(b) {
  440. err = errors.New("线性方程公式生成失败")
  441. return
  442. }
  443. //fmt.Println("a:", a, ";======b:", b)
  444. aDecimal := decimal.NewFromFloat(a)
  445. bDecimal := decimal.NewFromFloat(b)
  446. for k, currentDate := range dayList {
  447. tmpK := nValue + k + 1
  448. xDecimal := decimal.NewFromInt(int64(tmpK))
  449. val, _ := aDecimal.Mul(xDecimal).Add(bDecimal).RoundCeil(4).Float64()
  450. currentDateStr := currentDate.Format(utils.FormatDate)
  451. tmpData := &EdbInfoSearchData{
  452. EdbDataId: edbInfoId + 10000000000 + lenAllData + k,
  453. DataTime: currentDateStr,
  454. Value: val,
  455. }
  456. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  457. allDataList = append(allDataList, tmpData)
  458. existMap[currentDateStr] = val
  459. // 最大最小值
  460. if val < minValue {
  461. minValue = val
  462. }
  463. if val > maxValue {
  464. maxValue = val
  465. }
  466. }
  467. return
  468. }
  469. // GetChartPredictEdbInfoDataListByRuleTrendsHC 根据动态环比增加值的计算规则获取预测数据
  470. //
  471. // 研究员有对预测指标进行动态环差计算的需求,即预测指标使用环差规则进行预测时,环比增加值不是固定值,而是由几个预测指标计算得出的动态变化的值;
  472. // 需求说明:
  473. // 1、增加“动态环差”预测规则;
  474. // 2、环比增加值在弹窗设置;
  475. // 3、动态环差预测举例:
  476. // 指标A实际最新数据为2022-10-27(100);
  477. // 预测指标B预测数据为2022-10-28(240)、2022-10-29(300);
  478. // 预测指标C预测数据为2022-10-28(260)、2022-10-29(310);
  479. // 计算公式为B-C;
  480. // 则指标A至2022-10-29的预测值为2022-10-28(100+(240-260)=80)、2022-10-29(80+(300-310)=90);
  481. // 注:动态环比增加值的计算遵从计算指标的计算规则,即用于计算的指标若有部分指标缺少部分日期数据,则这部分日期数据不做计算,为空;若动态环比增加值某一天为空,则往前追溯最近一期有值的环比增加值作为该天的数值参与计算;
  482. func GetChartPredictEdbInfoDataListByRuleTrendsHC(edbInfoId int, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, hcDataMap, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  483. allDataList := make([]*EdbInfoSearchData, 0)
  484. allDataList = append(allDataList, realPredictEdbInfoData...)
  485. allDataList = append(allDataList, predictEdbInfoData...)
  486. newPredictEdbInfoData = predictEdbInfoData
  487. lenAllData := len(allDataList)
  488. if lenAllData <= 0 {
  489. return
  490. }
  491. for k, currentDate := range dayList {
  492. // 最近一条数据
  493. tmpLenAllDataList := len(allDataList)
  494. lastValue := allDataList[tmpLenAllDataList-1].Value
  495. // 动态环差值数据
  496. currentDateStr := currentDate.Format(utils.FormatDate)
  497. hcVal, ok := hcDataMap[currentDateStr]
  498. if !ok {
  499. continue
  500. }
  501. lastValueDecimal := decimal.NewFromFloat(lastValue)
  502. hcValDecimal := decimal.NewFromFloat(hcVal)
  503. val, _ := lastValueDecimal.Add(hcValDecimal).RoundCeil(4).Float64()
  504. tmpData := &EdbInfoSearchData{
  505. EdbDataId: edbInfoId + 10000000000 + lenAllData + k,
  506. //EdbInfoId: edbInfoId,
  507. DataTime: currentDateStr,
  508. Value: val,
  509. //DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  510. }
  511. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  512. allDataList = append(allDataList, tmpData)
  513. existMap[currentDateStr] = val
  514. // 最大最小值
  515. if val < minValue {
  516. minValue = val
  517. }
  518. if val > maxValue {
  519. maxValue = val
  520. }
  521. }
  522. return
  523. }
  524. // GetChartPredictEdbInfoDataListByRuleFinalValueHc 根据 给定终值后插值 规则获取预测数据
  525. //
  526. // 项目背景:
  527. // 假设螺纹产量在2023年1月1号的预测值是255万吨,从当下到2023年1月1号,螺纹产量将会线性变化,那么每一期的螺纹产量是多少?
  528. // 算法:从当下(2022/10/28)到2023/1/1号,一共65天,从当前值(305.02)到255,差值-50.02,
  529. // 则每日环差为-50.02/65=-0.7695。因为数据点是周度频率,每周环差为,-0.3849*7=-5.3868。
  530. // 从以上计算过程可看出,“给定终值后差值”的算法,是在“环差”算法的基础上,做的一个改动。即这个”环差值”=【(终值-最新值)/终值与最新值得日期差】*数据频率
  531. // 需求说明:
  532. // 1、增加一个预测规则,名为“给定终值后插值”,给定预测截止日期和预测终值,计算最新数据日期至预测截止日期的时间差T,计算最新数据和预测终值的数据差S,数据频率与指标频度有关,日度=1,周度=7,旬度=10,月度=30,季度=90,年度=365,环差值=S/T*频率,预测数值=前一天数值+环差值;
  533. // 2、最新数据值和日期改动后,需重新计算环差值和预测数值;
  534. func GetChartPredictEdbInfoDataListByRuleFinalValueHc(edbInfoId int, finalValue float64, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  535. allDataList := make([]*EdbInfoSearchData, 0)
  536. allDataList = append(allDataList, realPredictEdbInfoData...)
  537. allDataList = append(allDataList, predictEdbInfoData...)
  538. newPredictEdbInfoData = predictEdbInfoData
  539. index := len(allDataList)
  540. //获取后面的预测日期
  541. lenDay := len(dayList)
  542. if lenDay <= 0 {
  543. return
  544. }
  545. var hcValue float64
  546. lastValueDeciamal := decimal.NewFromFloat(allDataList[index-1].Value) // 实际数据的最后一个值
  547. finalValueDeciamal := decimal.NewFromFloat(finalValue) // 给定的终止数据
  548. dayDecimal := decimal.NewFromInt(int64(lenDay)) // 需要作为分母的期数
  549. hcValue, _ = finalValueDeciamal.Sub(lastValueDeciamal).Div(dayDecimal).Float64() // 计算出来的环差值
  550. //获取后面的预测数据
  551. predictEdbInfoData = make([]*EdbInfoSearchData, 0)
  552. lastK := lenDay - 1 // 最后的日期
  553. for k, currentDate := range dayList {
  554. tmpK := index + k - 1 //上1期的值
  555. var val float64
  556. // 环差别值计算
  557. if k == lastK { //如果是最后一天,那么就用最终值,否则就计算
  558. val = finalValue
  559. } else {
  560. val = PredictHczDiv(allDataList[tmpK].Value, hcValue)
  561. }
  562. currentDateStr := currentDate.Format(utils.FormatDate)
  563. tmpData := &EdbInfoSearchData{
  564. EdbDataId: edbInfoId + 10000000000 + index + k,
  565. //EdbInfoId: edbInfoId,
  566. DataTime: currentDateStr,
  567. Value: val,
  568. //DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  569. }
  570. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  571. allDataList = append(allDataList, tmpData)
  572. existMap[currentDateStr] = val
  573. // 最大最小值
  574. if val < minValue {
  575. minValue = val
  576. }
  577. if val > maxValue {
  578. maxValue = val
  579. }
  580. }
  581. return
  582. }
  583. // SeasonConf 季节性规则的配置
  584. type SeasonConf struct {
  585. Calendar string `description:"公历、农历"`
  586. YearType int `description:"选择方式,1:连续N年;2:指定年份"`
  587. NValue int `description:"连续N年"`
  588. YearList []int `description:"指定年份列表"`
  589. }
  590. // GetChartPredictEdbInfoDataListByRuleSeason 根据 季节性 规则获取预测数据
  591. //
  592. // ETA预测规则:季节性
  593. // 已知选定指标A最近更新日期: 2022-12-6 200
  594. // 设置预测截止日期2023-01-06
  595. // 1、选择过去N年,N=3
  596. // 则过去N年为2021、2020、2019
  597. // 指标A日期 实际值 指标A日期
  598. // 2019/12/5 150 2019/12/6
  599. // 2020/12/5 180 2020/12/6
  600. // 2021/12/5 210 2021/12/6
  601. // 2019/12/31 200 2020/1/1
  602. // 2020/12/31 210 2021/1/1
  603. // 2021/12/31 250 2022/1/1
  604. //
  605. // 计算12.7预测值,求过去N年环差均值=[(100-150)+(160-180)+(250-210)]/3=-10
  606. // 则12.7预测值=12.6值+过去N年环差均值=200-10=190
  607. // 以此类推...
  608. //
  609. // 计算2023.1.2预测值,求过去N年环差均值=[(300-200)+(220-210)+(260-250)]/3=40
  610. // 则2023.1.2预测值=2023.1.1值+过去N年环差均值
  611. func GetChartPredictEdbInfoDataListByRuleSeason(edbInfoId int, yearsList []int, calendar string, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
  612. allDataList := make([]*EdbInfoSearchData, 0)
  613. allDataList = append(allDataList, realPredictEdbInfoData...)
  614. allDataList = append(allDataList, predictEdbInfoData...)
  615. newPredictEdbInfoData = predictEdbInfoData
  616. // 插值法数据处理
  617. handleDataMap := make(map[string]float64)
  618. _, err = HandleDataByLinearRegression(allDataList, handleDataMap)
  619. if err != nil {
  620. return
  621. }
  622. // 获取每个年份的日期数据需要平移的天数
  623. moveDayMap := make(map[int]int, 0) // 每个年份的春节公历
  624. {
  625. if calendar == "公历" {
  626. for _, year := range yearsList {
  627. moveDayMap[year] = 0 //公历就不平移了
  628. }
  629. } else {
  630. currentDay := time.Now()
  631. if currentDay.Month() >= 11 { //如果大于等于11月份,那么用的是下一年的春节
  632. currentDay = currentDay.AddDate(1, 0, 0)
  633. }
  634. currentYear := currentDay.Year()
  635. currentYearCjnl := fmt.Sprintf("%d-01-01", currentYear) //当年的春节农历
  636. currentYearCjgl := solarlunar.LunarToSolar(currentYearCjnl, false) //当年的春节公历
  637. currentYearCjglTime, tmpErr := time.ParseInLocation(utils.FormatDate, currentYearCjgl, time.Local)
  638. if tmpErr != nil {
  639. err = errors.New("当前春节公历日期转换失败:" + tmpErr.Error())
  640. return
  641. }
  642. // 指定的年份
  643. for _, year := range yearsList {
  644. tmpYearCjnl := fmt.Sprintf("%d-01-01", year) //指定年的春节农历
  645. tmpYearCjgl := solarlunar.LunarToSolar(tmpYearCjnl, false) //指定年的春节公历
  646. //moveDayList = append(moveDayList, 0) //公历就不平移了
  647. tmpYearCjglTime, tmpErr := time.ParseInLocation(utils.FormatDate, tmpYearCjgl, time.Local)
  648. if tmpErr != nil {
  649. err = errors.New(fmt.Sprintf("%d公历日期转换失败:%s", year, tmpErr.Error()))
  650. return
  651. }
  652. tmpCurrentYearCjglTime := currentYearCjglTime.AddDate(year-currentYear, 0, 0)
  653. moveDay := utils.GetTimeSubDay(tmpYearCjglTime, tmpCurrentYearCjglTime)
  654. moveDayMap[year] = moveDay //公历平移
  655. }
  656. }
  657. }
  658. index := len(allDataList)
  659. //获取后面的预测日期
  660. //获取后面的预测数据
  661. predictEdbInfoData = make([]*EdbInfoSearchData, 0)
  662. for k, currentDate := range dayList {
  663. // 如果遇到闰二月,如2.29,去掉该天数据
  664. if strings.Contains(currentDate.Format(utils.FormatDate), "02-29") {
  665. continue
  666. }
  667. tmpHistoryVal := decimal.NewFromFloat(0) //往期的差值总和
  668. tmpHistoryValNum := 0 // 往期差值计算的数量
  669. tmpLenAllDataList := len(allDataList)
  670. tmpK := tmpLenAllDataList - 1 //上1期数据的下标
  671. lastDayData := allDataList[tmpK] // 上1期的数据
  672. lastDayStr := lastDayData.DataTime
  673. lastDayVal := lastDayData.Value
  674. lastDay, tmpErr := time.ParseInLocation(utils.FormatDate, lastDayStr, time.Local)
  675. if tmpErr != nil {
  676. err = errors.New("获取上期日期转换失败:" + tmpErr.Error())
  677. }
  678. for _, year := range yearsList {
  679. moveDay := moveDayMap[year] //需要移动的天数
  680. var tmpHistoryCurrentVal, tmpHistoryLastVal float64
  681. var isFindHistoryCurrent, isFindHistoryLast bool //是否找到前几年的数据
  682. //前几年当日的日期
  683. tmpHistoryCurrentDate := currentDate.AddDate(year-currentDate.Year(), 0, -moveDay)
  684. for i := 0; i <= 35; i++ { // 前后35天找数据,找到最近的值,先向后面找,再往前面找
  685. tmpDate := tmpHistoryCurrentDate.AddDate(0, 0, i)
  686. if val, ok := handleDataMap[tmpDate.Format(utils.FormatDate)]; ok {
  687. tmpHistoryCurrentVal = val
  688. isFindHistoryCurrent = true
  689. break
  690. } else {
  691. tmpDate := tmpHistoryCurrentDate.AddDate(0, 0, -i)
  692. if val, ok := handleDataMap[tmpDate.Format(utils.FormatDate)]; ok {
  693. tmpHistoryCurrentVal = val
  694. isFindHistoryCurrent = true
  695. break
  696. }
  697. }
  698. }
  699. //前几年上一期的日期
  700. tmpHistoryLastDate := lastDay.AddDate(year-lastDay.Year(), 0, -moveDay)
  701. for i := 0; i <= 35; i++ { // 前后35天找数据,找到最近的值,先向后面找,再往前面找
  702. tmpDate := tmpHistoryLastDate.AddDate(0, 0, i)
  703. if val, ok := handleDataMap[tmpDate.Format(utils.FormatDate)]; ok {
  704. tmpHistoryLastVal = val
  705. isFindHistoryLast = true
  706. break
  707. } else {
  708. tmpDate := tmpHistoryLastDate.AddDate(0, 0, -i)
  709. if val, ok := handleDataMap[tmpDate.Format(utils.FormatDate)]; ok {
  710. tmpHistoryLastVal = val
  711. isFindHistoryLast = true
  712. break
  713. }
  714. }
  715. }
  716. // 如果两个日期对应的数据都找到了,那么计算两期的差值
  717. if isFindHistoryCurrent && isFindHistoryLast {
  718. af := decimal.NewFromFloat(tmpHistoryCurrentVal)
  719. bf := decimal.NewFromFloat(tmpHistoryLastVal)
  720. tmpHistoryVal = tmpHistoryVal.Add(af.Sub(bf))
  721. tmpHistoryValNum++
  722. }
  723. }
  724. //计算的差值与选择的年份数量不一致,那么当前日期不计算
  725. if tmpHistoryValNum != len(yearsList) {
  726. continue
  727. }
  728. lastDayValDec := decimal.NewFromFloat(lastDayVal)
  729. val, _ := tmpHistoryVal.Div(decimal.NewFromInt(int64(tmpHistoryValNum))).Add(lastDayValDec).RoundCeil(4).Float64()
  730. currentDateStr := currentDate.Format(utils.FormatDate)
  731. tmpData := &EdbInfoSearchData{
  732. EdbDataId: edbInfoId + 10000000000 + index + k,
  733. //EdbInfoId: edbInfoId,
  734. DataTime: currentDateStr,
  735. Value: val,
  736. //DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  737. }
  738. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  739. allDataList = append(allDataList, tmpData)
  740. existMap[currentDateStr] = val
  741. // 继续使用插值法补充新预测日期的数据之间的值
  742. _, err = HandleDataByLinearRegression([]*EdbInfoSearchData{
  743. lastDayData, tmpData,
  744. }, handleDataMap)
  745. if err != nil {
  746. return
  747. }
  748. // 最大最小值
  749. if val < minValue {
  750. minValue = val
  751. }
  752. if val > maxValue {
  753. maxValue = val
  754. }
  755. }
  756. return
  757. }
  758. // MoveAverageConf 移动平均同比规则的配置
  759. type MoveAverageConf struct {
  760. Year int `description:"指定年份"`
  761. NValue int `description:"N期的数据"`
  762. }
  763. // GetChartPredictEdbInfoDataListByRuleMoveAverageTb 根据 移动平均同比 规则获取预测数据
  764. //
  765. // ETA预测规则:季节性
  766. // 2、选择指定N年,N=3
  767. // 指定N年为2012、2015、2018
  768. // 指标A日期 实际值 指标A日期 实际值
  769. // 2012/12/5 150 2012/12/6 130
  770. // 2015/12/5 180 2015/12/6 150
  771. // 2018/12/5 210 2018/12/6 260
  772. // 2012/12/31 200 2013/1/1 200
  773. // 2015/12/31 210 2016/1/1 250
  774. // 2018/12/31 250 2019/1/1 270
  775. // 计算12.7预测值,求过去N年环差均值=[(130-150)+(150-180)+(290-210)]/3=10
  776. // 则12.7预测值=12.6值+过去N年环差均值=200+10=210
  777. // 以此类推...
  778. // 计算2023.1.2预测值,求过去N年环差均值=[(200-200)+(250-210)+(270-250)]/3=16.67
  779. // 则2023.1.2预测值=2023.1.1值+过去N年环差均值
  780. func GetChartPredictEdbInfoDataListByRuleMoveAverageTb(edbInfoId int, nValue, year int, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
  781. allDataList := make([]*EdbInfoSearchData, 0)
  782. allDataList = append(allDataList, realPredictEdbInfoData...)
  783. allDataList = append(allDataList, predictEdbInfoData...)
  784. newPredictEdbInfoData = predictEdbInfoData
  785. lenAllData := len(allDataList)
  786. if lenAllData < nValue || lenAllData <= 0 {
  787. return
  788. }
  789. if nValue <= 0 {
  790. return
  791. }
  792. // 分母
  793. decimalN := decimal.NewFromInt(int64(nValue))
  794. // 需要减去的年份
  795. subYear := year - dayList[0].Year()
  796. //获取后面的预测数据
  797. for k, currentDate := range dayList {
  798. tmpLenAllDataList := len(allDataList)
  799. tmpIndex := tmpLenAllDataList - 1 //上1期数据的下标
  800. averageDateList := make([]string, 0) //计算平均数的日期
  801. // 数据集合中的最后一个数据
  802. tmpDecimalVal := decimal.NewFromFloat(allDataList[tmpIndex].Value)
  803. averageDateList = append(averageDateList, allDataList[tmpIndex].DataTime)
  804. for tmpK := 1; tmpK < nValue; tmpK++ {
  805. tmpIndex2 := tmpIndex - tmpK //上N期的值
  806. tmpDecimalVal2 := decimal.NewFromFloat(allDataList[tmpIndex2].Value)
  807. tmpDecimalVal = tmpDecimalVal.Add(tmpDecimalVal2)
  808. averageDateList = append(averageDateList, allDataList[tmpIndex2].DataTime)
  809. }
  810. // 最近的N期平均值
  811. tmpAverageVal := tmpDecimalVal.Div(decimalN)
  812. var tmpHistoryCurrentVal float64 // 前几年当日的数据值
  813. var isFindHistoryCurrent, isFindHistoryLast bool //是否找到前几年的数据
  814. tmpHistoryDecimalVal := decimal.NewFromFloat(0) //前几年N期数据总值
  815. {
  816. // 前几年N期汇总期数
  817. tmpHistoryValNum := 0
  818. {
  819. //前几年当日的日期
  820. tmpHistoryCurrentDate := currentDate.AddDate(subYear, 0, 0)
  821. for i := 0; i <= 35; i++ { // 前后35天找数据,找到最近的值,先向后面找,再往前面找
  822. tmpDate := tmpHistoryCurrentDate.AddDate(0, 0, i)
  823. if val, ok := existMap[tmpDate.Format(utils.FormatDate)]; ok {
  824. tmpHistoryCurrentVal = val
  825. isFindHistoryCurrent = true
  826. break
  827. } else {
  828. tmpDate := tmpHistoryCurrentDate.AddDate(0, 0, -i)
  829. if val, ok := existMap[tmpDate.Format(utils.FormatDate)]; ok {
  830. tmpHistoryCurrentVal = val
  831. isFindHistoryCurrent = true
  832. break
  833. }
  834. }
  835. }
  836. }
  837. for _, averageDate := range averageDateList {
  838. lastDay, tmpErr := time.ParseInLocation(utils.FormatDate, averageDate, time.Local)
  839. if tmpErr != nil {
  840. err = tmpErr
  841. return
  842. }
  843. //前几年上一期的日期
  844. tmpHistoryLastDate := lastDay.AddDate(subYear, 0, 0)
  845. for i := 0; i <= 35; i++ { // 前后35天找数据,找到最近的值,先向后面找,再往前面找
  846. tmpDate := tmpHistoryLastDate.AddDate(0, 0, i)
  847. if val, ok := existMap[tmpDate.Format(utils.FormatDate)]; ok {
  848. tmpDecimalVal2 := decimal.NewFromFloat(val)
  849. tmpHistoryDecimalVal = tmpHistoryDecimalVal.Add(tmpDecimalVal2)
  850. tmpHistoryValNum++
  851. break
  852. } else {
  853. tmpDate := tmpHistoryLastDate.AddDate(0, 0, -i)
  854. if val, ok := existMap[tmpDate.Format(utils.FormatDate)]; ok {
  855. tmpDecimalVal2 := decimal.NewFromFloat(val)
  856. tmpHistoryDecimalVal = tmpHistoryDecimalVal.Add(tmpDecimalVal2)
  857. tmpHistoryValNum++
  858. break
  859. }
  860. }
  861. }
  862. }
  863. // 汇总期数与配置的N期数量一致
  864. if tmpHistoryValNum == nValue {
  865. isFindHistoryLast = true
  866. }
  867. }
  868. // 如果没有找到前几年的汇总数据,或者没有找到前几年当日的数据,那么退出当前循环,进入下一循环
  869. if !isFindHistoryLast || !isFindHistoryCurrent {
  870. continue
  871. }
  872. // 计算最近N期平均值
  873. tmpHistoryAverageVal := tmpHistoryDecimalVal.Div(decimalN)
  874. // 计算最近N期同比值
  875. tbVal := tmpAverageVal.Div(tmpHistoryAverageVal)
  876. // 预测值结果 = 同比年份同期值(tmpHistoryCurrentVal的值)* 同比值(tbVal的值)
  877. val, _ := decimal.NewFromFloat(tmpHistoryCurrentVal).Mul(tbVal).RoundCeil(4).Float64()
  878. currentDateStr := currentDate.Format(utils.FormatDate)
  879. tmpData := &EdbInfoSearchData{
  880. EdbDataId: edbInfoId + 10000000000 + lenAllData + k,
  881. //EdbInfoId: edbInfoId,
  882. DataTime: currentDateStr,
  883. Value: val,
  884. //DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  885. }
  886. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  887. allDataList = append(allDataList, tmpData)
  888. existMap[currentDateStr] = val
  889. // 最大最小值
  890. if val < minValue {
  891. minValue = val
  892. }
  893. if val > maxValue {
  894. maxValue = val
  895. }
  896. }
  897. return
  898. }
  899. // GetChartPredictEdbInfoDataListByRuleTbzscz 根据 同比增速差值 规则获取预测数据
  900. // 同比增速差值计算方式:
  901. // 1、首先计算出所选指标实际最新日期值的同比增速:(本期数值-同期数值)÷同期数值*100%
  902. // 2、根据预测截止日期的同比增速终值、最新日期值的同比增速、与最新日期距离截止日期的期数,计算出到截止日期为止的每一期的同比增速。(等差规则计算每一期的同比增速,结合去年同期值,计算出每一期的同比预测值)。公差=(末项-首项)÷(n-1),an=a1+(n-1)d,(n为正整数,n大于等于2)
  903. // 3、根据去年同期值和未来每一期的同比增速值,求出同比预测值,同比预测值=同期值*(1+同比增速)
  904. // 同比增速差值:计算最新数据的同比增速((本期数值-同期数值)÷同期数值*100%),结合同比增速终值与期数,计算每一期同比增速,进而求出同比预测值。
  905. //
  906. // 例:如上图所示指标,(1)最新日期值2022-12-31 141175 ,结合同期值,计算同比增速;
  907. // (2)同比增速终值,若为50%, 预测日期为2023-03-31,则根据(1)中的同比增速值与同比增速终值,计算出中间两期的同比增速;
  908. // (3)求出每一期的预测同比值,预测同比值=同期值*(1+同比增速)
  909. func GetChartPredictEdbInfoDataListByRuleTbzscz(edbInfoId int, tbEndValue float64, dayList []time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  910. allDataList := make([]*EdbInfoSearchData, 0)
  911. allDataList = append(allDataList, realPredictEdbInfoData...)
  912. allDataList = append(allDataList, predictEdbInfoData...)
  913. newPredictEdbInfoData = predictEdbInfoData
  914. index := len(allDataList)
  915. // 获取近期数据的同比值
  916. if index <= 0 {
  917. return
  918. }
  919. lastData := allDataList[index-1]
  920. lastDayTime, _ := time.ParseInLocation(utils.FormatDate, lastData.DataTime, time.Local)
  921. var lastTb decimal.Decimal // 计算最新数据与上一期的数据同比值
  922. {
  923. //上一年的日期
  924. preDate := lastDayTime.AddDate(-1, 0, 0)
  925. preDateStr := preDate.Format(utils.FormatDate)
  926. if preValue, ok := existMap[preDateStr]; ok { //上一年同期找到
  927. lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
  928. } else {
  929. switch frequency {
  930. case "月度":
  931. //向上和向下,各找一个月
  932. nextDateDay := preDate
  933. preDateDay := preDate
  934. for i := 0; i <= 35; i++ {
  935. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  936. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  937. lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
  938. break
  939. } else {
  940. preDateDayStr := preDateDay.Format(utils.FormatDate)
  941. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  942. lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
  943. break
  944. }
  945. }
  946. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  947. preDateDay = preDateDay.AddDate(0, 0, -1)
  948. }
  949. case "季度", "年度":
  950. if preValue, ok := existMap[preDateStr]; ok { //上一年同期->下一个月找到
  951. lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
  952. break
  953. }
  954. default:
  955. nextDateDay := preDate
  956. preDateDay := preDate
  957. for i := 0; i < 35; i++ {
  958. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  959. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  960. lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
  961. break
  962. } else {
  963. preDateDayStr := preDateDay.Format(utils.FormatDate)
  964. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  965. lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
  966. break
  967. } else {
  968. //fmt.Println("pre not find:", preDateStr, "i:", i)
  969. }
  970. }
  971. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  972. preDateDay = preDateDay.AddDate(0, 0, -1)
  973. }
  974. }
  975. }
  976. }
  977. //获取后面的预测数据
  978. lenDay := len(dayList)
  979. tbEndValueDecimal := decimal.NewFromFloat(tbEndValue)
  980. avgTbVal := tbEndValueDecimal.Sub(lastTb).Div(decimal.NewFromInt(int64(lenDay)))
  981. predictEdbInfoData = make([]*EdbInfoSearchData, 0)
  982. for k, currentDate := range dayList {
  983. var tbValue decimal.Decimal
  984. if k == lenDay-1 { // 如果是最后的日期了,那么就用终值去计算
  985. tbValue = tbEndValueDecimal.Add(decimal.NewFromInt(1))
  986. } else { // 最近数据的同比值 + (平均增值乘以当前期数)
  987. tbValue = lastTb.Add(avgTbVal.Mul(decimal.NewFromInt(int64(k + 1)))).Add(decimal.NewFromInt(1))
  988. }
  989. tmpData := &EdbInfoSearchData{
  990. EdbDataId: edbInfoId + 100000 + index + k,
  991. //EdbInfoId: edbInfoId,
  992. DataTime: currentDate.Format(utils.FormatDate),
  993. //Value: dataValue,
  994. //DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  995. }
  996. var val float64
  997. var calculateStatus bool //计算结果
  998. //currentItem := existMap[av]
  999. //上一年的日期
  1000. preDate := currentDate.AddDate(-1, 0, 0)
  1001. preDateStr := preDate.Format(utils.FormatDate)
  1002. if preValue, ok := existMap[preDateStr]; ok { //上一年同期找到
  1003. val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).RoundCeil(4).Float64()
  1004. calculateStatus = true
  1005. } else {
  1006. switch frequency {
  1007. case "月度":
  1008. //向上和向下,各找一个月
  1009. nextDateDay := preDate
  1010. preDateDay := preDate
  1011. for i := 0; i <= 35; i++ {
  1012. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  1013. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  1014. val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).RoundCeil(4).Float64()
  1015. calculateStatus = true
  1016. break
  1017. } else {
  1018. preDateDayStr := preDateDay.Format(utils.FormatDate)
  1019. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  1020. val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).RoundCeil(4).Float64()
  1021. calculateStatus = true
  1022. break
  1023. }
  1024. }
  1025. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  1026. preDateDay = preDateDay.AddDate(0, 0, -1)
  1027. }
  1028. case "季度", "年度":
  1029. if preValue, ok := existMap[preDateStr]; ok { //上一年同期->下一个月找到
  1030. val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).RoundCeil(4).Float64()
  1031. calculateStatus = true
  1032. break
  1033. }
  1034. default:
  1035. nextDateDay := preDate
  1036. preDateDay := preDate
  1037. for i := 0; i < 35; i++ {
  1038. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  1039. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  1040. val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).RoundCeil(4).Float64()
  1041. calculateStatus = true
  1042. break
  1043. } else {
  1044. preDateDayStr := preDateDay.Format(utils.FormatDate)
  1045. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  1046. val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).RoundCeil(4).Float64()
  1047. calculateStatus = true
  1048. break
  1049. } else {
  1050. //fmt.Println("pre not find:", preDateStr, "i:", i)
  1051. }
  1052. }
  1053. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  1054. preDateDay = preDateDay.AddDate(0, 0, -1)
  1055. }
  1056. }
  1057. }
  1058. if calculateStatus {
  1059. tmpData.Value = val
  1060. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  1061. allDataList = append(allDataList, tmpData)
  1062. existMap[tmpData.DataTime] = val
  1063. // 最大最小值
  1064. if val < minValue {
  1065. minValue = val
  1066. }
  1067. if val > maxValue {
  1068. maxValue = val
  1069. }
  1070. }
  1071. }
  1072. return
  1073. }
  1074. // RuleLineNhConf 一元线性拟合规则的配置
  1075. type RuleLineNhConf struct {
  1076. StartDate string `description:"开始日期"`
  1077. EndDate string `description:"结束日期"`
  1078. MoveDay int `description:"移动天数"`
  1079. EdbInfoId int `description:"指标id"`
  1080. }
  1081. // GetChartPredictEdbInfoDataListByRuleLineNh 根据 一元线性拟合 的计算规则获取预测数据
  1082. //
  1083. // 选择被预测的指标B(作为自变量,非预测指标),选择指标A(作为因变量,可以是基础指标和预测指标)
  1084. // 2、选择拟合时间段,起始日期至今或指定时间段,选择至今,在计算时截止到指标B的最新日期
  1085. // 3、设定A领先B时间(天),正整数、负整数、0
  1086. // 4、调用拟合残差的数据预处理和算法,给出拟合方程Y=aX+b的系数a,b
  1087. // 5、指标A代入拟合方程得到拟合预测指标B',拟合预测指标使用指标B的频度,在指标B的实际值后面连接拟合预测指标B'对应日期的预测值
  1088. //
  1089. // 注:选择预测截止日期,若所选日期 ≤ 指标A设置领先后的日期序列,则预测指标日期最新日期有值(在指标B'的有值范围内);若所选日期 > 指标A设置领先后的日期序列,则预测指标只到指标A领先后的日期序列(超出指标B'的有值范围,最多到指标B'的最新值);指标A、B更新后,更新预测指标
  1090. func GetChartPredictEdbInfoDataListByRuleLineNh(edbInfoId int, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, newNhccDataMap, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
  1091. allDataList := make([]*EdbInfoSearchData, 0)
  1092. allDataList = append(allDataList, realPredictEdbInfoData...)
  1093. allDataList = append(allDataList, predictEdbInfoData...)
  1094. newPredictEdbInfoData = predictEdbInfoData
  1095. lenAllData := len(allDataList)
  1096. if lenAllData <= 0 {
  1097. return
  1098. }
  1099. for k, currentDate := range dayList {
  1100. // 动态拟合残差值数据
  1101. currentDateStr := currentDate.Format(utils.FormatDate)
  1102. val, ok := newNhccDataMap[currentDateStr]
  1103. if !ok {
  1104. continue
  1105. }
  1106. tmpData := &EdbInfoSearchData{
  1107. EdbDataId: edbInfoId + 100000 + lenAllData + k,
  1108. //EdbInfoId: edbInfoId,
  1109. DataTime: currentDateStr,
  1110. Value: val,
  1111. //DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  1112. }
  1113. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  1114. allDataList = append(allDataList, tmpData)
  1115. existMap[currentDateStr] = val
  1116. // 最大最小值
  1117. if val < minValue {
  1118. minValue = val
  1119. }
  1120. if val > maxValue {
  1121. maxValue = val
  1122. }
  1123. }
  1124. return
  1125. }
  1126. // getCalculateNhccData 获取计算出来的 拟合残差 数据
  1127. func getCalculateNhccData(secondDataList []*EdbInfoSearchData, ruleConf RuleLineNhConf) (newBDataMap map[string]float64, err error, errMsg string) {
  1128. firstEdbInfoId := ruleConf.EdbInfoId
  1129. moveDay := ruleConf.MoveDay
  1130. startDate, _ := time.ParseInLocation(utils.FormatDate, ruleConf.StartDate, time.Local)
  1131. endDate, _ := time.ParseInLocation(utils.FormatDate, ruleConf.EndDate, time.Local)
  1132. //查询当前指标现有的数据
  1133. edbInfo, err := GetEdbInfoById(firstEdbInfoId)
  1134. if err != nil {
  1135. return
  1136. }
  1137. //第一个指标
  1138. aDataList := make([]EdbInfoSearchData, 0)
  1139. aDataMap := make(map[string]float64)
  1140. {
  1141. //第一个指标的数据列表
  1142. var firstDataList []*EdbInfoSearchData
  1143. switch edbInfo.EdbInfoType {
  1144. case 0:
  1145. var condition string
  1146. var pars []interface{}
  1147. condition += " AND edb_info_id=? "
  1148. pars = append(pars, edbInfo.EdbInfoId)
  1149. //获取来源指标的数据
  1150. firstDataList, err = GetEdbDataListAll(condition, pars, edbInfo.Source, 1)
  1151. case 1:
  1152. firstDataList, err = GetPredictEdbDataListAllByStartDate(edbInfo, 1, "")
  1153. default:
  1154. err = errors.New(fmt.Sprint("获取失败,指标类型异常", edbInfo.EdbInfoType))
  1155. }
  1156. if err != nil {
  1157. return
  1158. }
  1159. aDataList, aDataMap = handleNhccData(firstDataList, moveDay)
  1160. }
  1161. //第二个指标
  1162. bDataList := make([]EdbInfoSearchData, 0)
  1163. bDataMap := make(map[string]float64)
  1164. {
  1165. bDataList, bDataMap = handleNhccData(secondDataList, 0)
  1166. }
  1167. if len(aDataList) <= 0 {
  1168. errMsg = `自变量没有数据`
  1169. err = errors.New(errMsg)
  1170. return
  1171. }
  1172. if len(bDataList) <= 0 {
  1173. errMsg = `因变量没有数据`
  1174. err = errors.New(errMsg)
  1175. return
  1176. }
  1177. // 拟合残差计算的结束日期判断
  1178. {
  1179. endAData := aDataList[len(aDataList)-1]
  1180. tmpEndDate, tmpErr := time.ParseInLocation(utils.FormatDate, endAData.DataTime, time.Local)
  1181. if tmpErr != nil {
  1182. err = tmpErr
  1183. return
  1184. }
  1185. // 如果A指标的最新数据日期早于拟合残差的结束日期,那么就用A指标的最新数据日期
  1186. if tmpEndDate.Before(endDate) {
  1187. endDate = tmpEndDate
  1188. }
  1189. endBData := bDataList[len(bDataList)-1]
  1190. tmpEndDate, tmpErr = time.ParseInLocation(utils.FormatDate, endBData.DataTime, time.Local)
  1191. if tmpErr != nil {
  1192. err = tmpErr
  1193. return
  1194. }
  1195. // 如果B指标的最新数据日期早于拟合残差的结束日期,那么就用A指标的最新数据日期
  1196. if tmpEndDate.Before(endDate) {
  1197. endDate = tmpEndDate
  1198. }
  1199. }
  1200. // 计算线性方程公式
  1201. var a, b float64
  1202. {
  1203. coordinateData := make([]utils.Coordinate, 0)
  1204. for i := startDate; i.Before(endDate) || i.Equal(endDate); i = i.AddDate(0, 0, 1) {
  1205. dateStr := i.Format(utils.FormatDate)
  1206. xValue, ok := aDataMap[dateStr]
  1207. if !ok {
  1208. errMsg = "自变量日期:" + dateStr + "数据异常,导致计算线性方程公式失败"
  1209. err = errors.New(errMsg)
  1210. return
  1211. }
  1212. yValue, ok := bDataMap[dateStr]
  1213. if !ok {
  1214. errMsg = "因变量日期:" + dateStr + "数据异常,导致计算线性方程公式失败"
  1215. err = errors.New(errMsg)
  1216. return
  1217. }
  1218. tmpCoordinate := utils.Coordinate{
  1219. X: xValue,
  1220. Y: yValue,
  1221. }
  1222. coordinateData = append(coordinateData, tmpCoordinate)
  1223. }
  1224. a, b = utils.GetLinearResult(coordinateData)
  1225. }
  1226. if math.IsNaN(a) || math.IsNaN(b) {
  1227. errMsg = "线性方程公式生成失败"
  1228. err = errors.New(errMsg)
  1229. return
  1230. }
  1231. //fmt.Println("a:", a, ";======b:", b)
  1232. //计算B’
  1233. newBDataMap = make(map[string]float64)
  1234. {
  1235. //B’=aA+b
  1236. aDecimal := decimal.NewFromFloat(a)
  1237. bDecimal := decimal.NewFromFloat(b)
  1238. for _, aData := range aDataList {
  1239. xDecimal := decimal.NewFromFloat(aData.Value)
  1240. val, _ := aDecimal.Mul(xDecimal).Add(bDecimal).RoundCeil(4).Float64()
  1241. newBDataMap[aData.DataTime] = val
  1242. }
  1243. }
  1244. return
  1245. }
  1246. // GetChartPredictEdbInfoDataListByRuleNAnnualAverage 根据 N年均值 规则获取预测数据
  1247. // ETA预测规则:N年均值:过去N年同期均值。过去N年可以连续或者不连续,指标数据均用线性插值补全为日度数据后计算;
  1248. func GetChartPredictEdbInfoDataListByRuleNAnnualAverage(edbInfoId int, configValue string, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
  1249. // 获取配置的年份列表
  1250. yearList, _, err := getYearListBySeasonConf(configValue)
  1251. if err != nil {
  1252. return
  1253. }
  1254. allDataList := make([]*EdbInfoSearchData, 0)
  1255. allDataList = append(allDataList, realPredictEdbInfoData...)
  1256. allDataList = append(allDataList, predictEdbInfoData...)
  1257. newPredictEdbInfoData = predictEdbInfoData
  1258. // 插值法数据处理
  1259. handleDataMap := make(map[string]float64)
  1260. _, err = HandleDataByLinearRegression(allDataList, handleDataMap)
  1261. if err != nil {
  1262. return
  1263. }
  1264. index := len(allDataList)
  1265. //获取后面的预测数据
  1266. predictEdbInfoData = make([]*EdbInfoSearchData, 0)
  1267. for k, currentDate := range dayList {
  1268. // 如果遇到闰二月,如2.29,去掉该天数据
  1269. if strings.Contains(currentDate.Format(utils.FormatDate), "02-29") {
  1270. continue
  1271. }
  1272. tmpK := len(allDataList) - 1 //上1期数据的下标
  1273. lastDayData := allDataList[tmpK] // 上1期的数据
  1274. tmpHistoryVal := decimal.NewFromFloat(0) //往期的差值总和
  1275. tmpHistoryValNum := 0 // 往期差值计算的数量
  1276. for _, year := range yearList {
  1277. //前几年当日的日期
  1278. tmpHistoryCurrentDate := currentDate.AddDate(year-currentDate.Year(), 0, 0)
  1279. if val, ok := handleDataMap[tmpHistoryCurrentDate.Format(utils.FormatDate)]; ok {
  1280. tmpHistoryVal = tmpHistoryVal.Add(decimal.NewFromFloat(val))
  1281. tmpHistoryValNum++
  1282. }
  1283. }
  1284. //计算的差值与选择的年份数量不一致,那么当前日期不计算
  1285. if tmpHistoryValNum != len(yearList) {
  1286. continue
  1287. }
  1288. val, _ := tmpHistoryVal.Div(decimal.NewFromInt(int64(tmpHistoryValNum))).RoundCeil(4).Float64()
  1289. currentDateStr := currentDate.Format(utils.FormatDate)
  1290. tmpData := &EdbInfoSearchData{
  1291. EdbDataId: edbInfoId + 100000 + index + k,
  1292. //EdbInfoId: edbInfoId,
  1293. DataTime: currentDateStr,
  1294. Value: val,
  1295. //DataTimestamp: currentDate.UnixNano() / 1e6,
  1296. }
  1297. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  1298. allDataList = append(allDataList, tmpData)
  1299. existMap[currentDateStr] = val
  1300. // 继续使用插值法补充新预测日期的数据之间的值
  1301. _, err = HandleDataByLinearRegression([]*EdbInfoSearchData{
  1302. lastDayData, tmpData,
  1303. }, handleDataMap)
  1304. if err != nil {
  1305. return
  1306. }
  1307. // 最大最小值
  1308. if val < minValue {
  1309. minValue = val
  1310. }
  1311. if val > maxValue {
  1312. maxValue = val
  1313. }
  1314. }
  1315. return
  1316. }
  1317. // AnnualValueInversionConf 年度值倒推规则
  1318. type AnnualValueInversionConf struct {
  1319. Value float64 `description:"年度值"`
  1320. Type int `description:"分配方式,1:均值法;2:同比法"`
  1321. Year int `description:"同比年份"`
  1322. }
  1323. // GetChartPredictEdbInfoDataListByRuleAnnualValueInversion 根据 年度值倒推 规则获取预测数据
  1324. // ETA预测规则:年度值倒推:设定年度值,余额=年度值-年初至今累计值(算法参考累计值),进行余额分配,均值法分配时保证每期数值相等(日度/周度:剩余期数=剩余自然日历天数/今年指标最新日期自然日历天数*今年至今指标数据期数;旬度/月度/季度/半年度:剩余期数=全年期数(36\12\4\2)-今年至今自然日历期数),同比法保证每期同比相等(同比增速=余额/同比年份相应日期的余额,预测值等于同比年份同期值*同比增速)
  1325. // 举例:
  1326. // 指标A 日度 最新日期 2023-05-19 年初至今累计值100
  1327. // 设置年度值1000
  1328. // 则余额=1000-100=900
  1329. // 均值法分配:剩余期数=226/139*120=195.11
  1330. // 今年之后的每一期预测值=900/195.11=4.6128
  1331. // 同比法分配:同比增速=900/同比年份5.19的余额
  1332. // 预测值=同比年份5-20的值*(1+同比增速)
  1333. func GetChartPredictEdbInfoDataListByRuleAnnualValueInversion(edbInfoId int, configValue string, dayList []time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
  1334. if frequency == "年度" {
  1335. err = errors.New("当前指标频度是年度,不允许配置年度值倒推")
  1336. return
  1337. }
  1338. // 获取配置
  1339. var annualValueInversionConf AnnualValueInversionConf
  1340. err = json.Unmarshal([]byte(configValue), &annualValueInversionConf)
  1341. if err != nil {
  1342. err = errors.New("年度值倒推配置信息异常:" + err.Error())
  1343. return
  1344. }
  1345. allDataList := make([]*EdbInfoSearchData, 0)
  1346. allDataList = append(allDataList, realPredictEdbInfoData...)
  1347. allDataList = append(allDataList, predictEdbInfoData...)
  1348. newPredictEdbInfoData = predictEdbInfoData
  1349. index := len(allDataList)
  1350. // 配置的年度值
  1351. yearValueConfig := annualValueInversionConf.Value
  1352. // 当前年的日期
  1353. currDayTime := dayList[0]
  1354. lastDayTime := dayList[len(dayList)-1]
  1355. if currDayTime.Year() != lastDayTime.Year() {
  1356. err = errors.New("年度值倒推不支持跨年预测")
  1357. return
  1358. }
  1359. // 均值法
  1360. if annualValueInversionConf.Type == 1 {
  1361. // 当前年的期数
  1362. currYearN := 0
  1363. var currYearVal float64
  1364. for _, v := range allDataList {
  1365. currTime, tmpErr := time.ParseInLocation(utils.FormatDate, v.DataTime, time.Local)
  1366. if tmpErr != nil {
  1367. err = tmpErr
  1368. return
  1369. }
  1370. // 只是计算今年的
  1371. if currTime.Year() != currDayTime.Year() {
  1372. continue
  1373. }
  1374. currYearN++
  1375. currYearVal = currYearVal + v.Value
  1376. }
  1377. var averageVal float64
  1378. switch frequency {
  1379. case "半年度":
  1380. averageVal, _ = (decimal.NewFromFloat(yearValueConfig).Sub(decimal.NewFromFloat(currYearVal))).Div(decimal.NewFromInt(int64(2 - currYearN))).Float64()
  1381. case "季度":
  1382. averageVal, _ = (decimal.NewFromFloat(yearValueConfig).Sub(decimal.NewFromFloat(currYearVal))).Div(decimal.NewFromInt(int64(4 - currYearN))).Float64()
  1383. case "月度":
  1384. averageVal, _ = (decimal.NewFromFloat(yearValueConfig).Sub(decimal.NewFromFloat(currYearVal))).Div(decimal.NewFromInt(int64(12 - currYearN))).Float64()
  1385. case "旬度":
  1386. averageVal, _ = (decimal.NewFromFloat(yearValueConfig).Sub(decimal.NewFromFloat(currYearVal))).Div(decimal.NewFromInt(int64(36 - currYearN))).Float64()
  1387. case "周度", "日度":
  1388. //剩余期数=剩余自然日历天数/今年指标最新日期自然日历天数*今年至今指标数据期数
  1389. // 当前年的第一天
  1390. yearFirstDay := time.Date(currDayTime.Year(), 1, 1, 0, 0, 0, 0, time.Local)
  1391. subDay := utils.GetTimeSubDay(yearFirstDay, currDayTime) + 1
  1392. // 当前年的最后一天
  1393. yearLastDay := time.Date(currDayTime.Year(), 12, 31, 0, 0, 0, 0, time.Local)
  1394. subDay2 := utils.GetTimeSubDay(yearFirstDay, yearLastDay) + 1
  1395. surplusN := decimal.NewFromInt(int64(subDay2 - subDay)).Div(decimal.NewFromInt(int64(subDay))).Mul(decimal.NewFromInt(int64(currYearN)))
  1396. averageVal, _ = (decimal.NewFromFloat(annualValueInversionConf.Value).Sub(decimal.NewFromFloat(currYearVal))).Div(surplusN).Round(4).Float64()
  1397. }
  1398. for k, currentDate := range dayList {
  1399. currentDateStr := currentDate.Format(utils.FormatDate)
  1400. tmpData := &EdbInfoSearchData{
  1401. EdbDataId: edbInfoId + 100000 + index + k,
  1402. //EdbInfoId: edbInfoId,
  1403. DataTime: currentDateStr,
  1404. Value: averageVal,
  1405. //DataTimestamp: currentDate.UnixNano() / 1e6,
  1406. }
  1407. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  1408. allDataList = append(allDataList, tmpData)
  1409. existMap[currentDateStr] = averageVal
  1410. }
  1411. // 最大最小值
  1412. if averageVal < minValue {
  1413. minValue = averageVal
  1414. }
  1415. if averageVal > maxValue {
  1416. maxValue = averageVal
  1417. }
  1418. return
  1419. }
  1420. // 同比法分配
  1421. // 同比法保证每期同比相等(同比增速=余额/同比年份相应日期的余额,预测值等于同比年份同期值*同比增速);
  1422. // 同比法分配:同比增速=900/同比年份5.19的余额
  1423. // 每年截止到当前日期的累计值
  1424. dateTotalMap := make(map[time.Time]float64)
  1425. // 每年的累计值(计算使用)
  1426. yearTotalMap := make(map[int]float64)
  1427. for _, v := range allDataList {
  1428. currTime, tmpErr := time.ParseInLocation(utils.FormatDate, v.DataTime, time.Local)
  1429. if tmpErr != nil {
  1430. err = tmpErr
  1431. return
  1432. }
  1433. yearVal := yearTotalMap[currTime.Year()]
  1434. yearVal = yearVal + v.Value
  1435. yearTotalMap[currTime.Year()] = yearVal
  1436. dateTotalMap[currTime] = yearVal
  1437. }
  1438. //(同比增速=余额/同比年份相应日期的余额,预测值等于同比年份同期值*同比增速);
  1439. for k, currentDate := range dayList {
  1440. currYearBalance := yearValueConfig - yearTotalMap[currentDate.Year()] // 当年的余额
  1441. //同比年份相应日期
  1442. lastYear := annualValueInversionConf.Year + (currentDate.Year() - currDayTime.Year())
  1443. var lastDateTime time.Time
  1444. switch frequency {
  1445. case "半年度", "季度":
  1446. lastDateTime = time.Date(lastYear, currentDate.Month(), currentDate.Day(), 0, 0, 0, 0, currentDate.Location())
  1447. case "月度":
  1448. lastDateTime = time.Date(lastYear, currentDate.Month()+1, 1, 0, 0, 0, 0, currentDate.Location()).AddDate(0, 0, -1)
  1449. case "旬度":
  1450. if currentDate.Day() == 10 || currentDate.Day() == 20 {
  1451. lastDateTime = time.Date(lastYear, currentDate.Month(), currentDate.Day(), 0, 0, 0, 0, currentDate.Location())
  1452. } else {
  1453. lastDateTime = time.Date(lastYear, currentDate.Month()+1, 1, 0, 0, 0, 0, currentDate.Location()).AddDate(0, 0, -1)
  1454. }
  1455. case "周度", "日度":
  1456. lastDateTime = time.Date(lastYear, currentDate.Month(), currentDate.Day(), 0, 0, 0, 0, currentDate.Location())
  1457. }
  1458. // 同比年份相应日期的累计值
  1459. var dateTotal float64
  1460. dateTotal, ok := dateTotalMap[lastDateTime]
  1461. if !ok { //如果没有找到这个日期,那么就往前面找,一直到找到这个累计值,或者找完这一年
  1462. yearFirstDayTime := time.Date(lastDateTime.Year(), 1, 1, 0, 0, 0, 0, lastDateTime.Location())
  1463. for tmpDateTime := lastDateTime.AddDate(0, 0, -1); tmpDateTime.After(yearFirstDayTime) || tmpDateTime.Equal(yearFirstDayTime); tmpDateTime = tmpDateTime.AddDate(0, 0, -1) {
  1464. dateTotal, ok = dateTotalMap[tmpDateTime]
  1465. if ok {
  1466. break
  1467. }
  1468. }
  1469. }
  1470. //同比年份相应日期的余额
  1471. lastYearDateBalance := yearValueConfig - dateTotal
  1472. // 同比增速=余额/同比年份相应日期的余额
  1473. tbVal := decimal.NewFromFloat(currYearBalance).Div(decimal.NewFromFloat(lastYearDateBalance))
  1474. // 获取同比年份同期值,获取失败的话,就不处理
  1475. if lastDateVal, ok := existMap[lastDateTime.Format(utils.FormatDate)]; ok {
  1476. //预测值 = 同比年份同期值*同比增速
  1477. tmpVal, _ := decimal.NewFromFloat(lastDateVal).Mul(tbVal).Round(4).Float64()
  1478. currentDateStr := currentDate.Format(utils.FormatDate)
  1479. tmpData := &EdbInfoSearchData{
  1480. EdbDataId: edbInfoId + 100000 + index + k,
  1481. //EdbInfoId: edbInfoId,
  1482. DataTime: currentDateStr,
  1483. Value: tmpVal,
  1484. //DataTimestamp: currentDate.UnixNano() / 1e6,
  1485. }
  1486. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  1487. allDataList = append(allDataList, tmpData)
  1488. existMap[currentDateStr] = tmpVal
  1489. yearVal := yearTotalMap[currentDate.Year()]
  1490. yearVal = yearVal + tmpVal
  1491. yearTotalMap[currentDate.Year()] = yearVal
  1492. dateTotalMap[currentDate] = yearVal
  1493. // 最大最小值
  1494. if tmpVal < minValue {
  1495. minValue = tmpVal
  1496. }
  1497. if tmpVal > maxValue {
  1498. maxValue = tmpVal
  1499. }
  1500. }
  1501. }
  1502. return
  1503. }
  1504. // getYearListBySeasonConf 根据配置获取年份列表
  1505. func getYearListBySeasonConf(configValue string) (yearList []int, seasonConf SeasonConf, err error) {
  1506. tmpErr := json.Unmarshal([]byte(configValue), &seasonConf)
  1507. if tmpErr != nil {
  1508. err = errors.New("年份配置信息异常:" + tmpErr.Error())
  1509. return
  1510. }
  1511. //选择方式,1:连续N年;2:指定年份
  1512. if seasonConf.YearType == 1 {
  1513. if seasonConf.NValue < 1 {
  1514. err = errors.New("连续N年不允许小于1")
  1515. return
  1516. }
  1517. currYear := time.Now().Year()
  1518. for i := 0; i < seasonConf.NValue; i++ {
  1519. yearList = append(yearList, currYear-i-1)
  1520. }
  1521. } else {
  1522. yearList = seasonConf.YearList
  1523. }
  1524. return
  1525. }