predict_edb_info_rule.go 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711
  1. package models
  2. import (
  3. "errors"
  4. "github.com/shopspring/decimal"
  5. "hongze/hongze_edb_lib/utils"
  6. "math"
  7. "time"
  8. )
  9. // GetChartPredictEdbInfoDataListByRule1 根据规则1获取预测数据
  10. func GetChartPredictEdbInfoDataListByRule1(edbInfoId int, dataValue float64, startDate, endDate time.Time, frequency string, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData) {
  11. newPredictEdbInfoData = predictEdbInfoData
  12. //获取后面的预测数据
  13. dayList := getPredictEdbDayList(startDate, endDate, frequency)
  14. predictEdbInfoData = make([]*EdbInfoSearchData, 0)
  15. for k, v := range dayList {
  16. newPredictEdbInfoData = append(newPredictEdbInfoData, &EdbInfoSearchData{
  17. EdbDataId: edbInfoId + 10000000000 + k,
  18. DataTime: v.Format(utils.FormatDate),
  19. Value: dataValue,
  20. })
  21. existMap[v.Format(utils.FormatDate)] = dataValue
  22. }
  23. return
  24. }
  25. // GetChartPredictEdbInfoDataListByRuleTb 根据同比值规则获取预测数据
  26. // 2.1 同比: 在未来某一个时间段内,给定一个固定的同比增速a,用去年同期值X乘以同比增速(1+a),得到预测值Y=X(1+a)
  27. // 例: 今年1-3月值,100,100,120。给定同比增速a=0.1,则明年1-3月预测值为: 100*1.1=110,100*1.1=110,120*1.1=132。
  28. func GetChartPredictEdbInfoDataListByRuleTb(edbInfoId int, tbValue float64, startDate, endDate time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  29. allDataList := make([]*EdbInfoSearchData, 0)
  30. allDataList = append(allDataList, realPredictEdbInfoData...)
  31. allDataList = append(allDataList, predictEdbInfoData...)
  32. newPredictEdbInfoData = predictEdbInfoData
  33. index := len(allDataList)
  34. //获取后面的预测数据
  35. dayList := getPredictEdbDayList(startDate, endDate, frequency)
  36. predictEdbInfoData = make([]*EdbInfoSearchData, 0)
  37. for k, currentDate := range dayList {
  38. tmpData := &EdbInfoSearchData{
  39. EdbDataId: edbInfoId + 10000000000 + index + k,
  40. DataTime: currentDate.Format(utils.FormatDate),
  41. //Value: dataValue,
  42. }
  43. var val float64
  44. var calculateStatus bool //计算结果
  45. //currentItem := existMap[av]
  46. //上一年的日期
  47. preDate := currentDate.AddDate(-1, 0, 0)
  48. preDateStr := preDate.Format(utils.FormatDate)
  49. if preValue, ok := existMap[preDateStr]; ok { //上一年同期找到
  50. val = PredictTbzDiv(preValue, tbValue)
  51. calculateStatus = true
  52. } else {
  53. switch frequency {
  54. case "月度":
  55. //向上和向下,各找一个月
  56. nextDateDay := preDate
  57. preDateDay := preDate
  58. for i := 0; i <= 35; i++ {
  59. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  60. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  61. val = PredictTbzDiv(preValue, tbValue)
  62. calculateStatus = true
  63. break
  64. } else {
  65. preDateDayStr := preDateDay.Format(utils.FormatDate)
  66. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  67. val = PredictTbzDiv(preValue, tbValue)
  68. calculateStatus = true
  69. break
  70. }
  71. }
  72. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  73. preDateDay = preDateDay.AddDate(0, 0, -1)
  74. }
  75. case "季度", "年度":
  76. if preValue, ok := existMap[preDateStr]; ok { //上一年同期->下一个月找到
  77. val = PredictTbzDiv(preValue, tbValue)
  78. calculateStatus = true
  79. break
  80. }
  81. default:
  82. nextDateDay := preDate
  83. preDateDay := preDate
  84. for i := 0; i < 35; i++ {
  85. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  86. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  87. val = PredictTbzDiv(preValue, tbValue)
  88. calculateStatus = true
  89. break
  90. } else {
  91. preDateDayStr := preDateDay.Format(utils.FormatDate)
  92. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  93. val = PredictTbzDiv(preValue, tbValue)
  94. calculateStatus = true
  95. break
  96. } else {
  97. //fmt.Println("pre not find:", preDateStr, "i:", i)
  98. }
  99. }
  100. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  101. preDateDay = preDateDay.AddDate(0, 0, -1)
  102. }
  103. }
  104. }
  105. if calculateStatus {
  106. tmpData.Value = val
  107. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  108. allDataList = append(allDataList, tmpData)
  109. existMap[tmpData.DataTime] = val
  110. // 最大最小值
  111. if val < minValue {
  112. minValue = val
  113. }
  114. if val > maxValue {
  115. maxValue = val
  116. }
  117. }
  118. }
  119. return
  120. }
  121. // PredictTbzDiv 同比值计算
  122. // @params a float64 去年同期值
  123. // @params b float64 固定同比增速
  124. func PredictTbzDiv(a, b float64) (result float64) {
  125. if b != 0 {
  126. // 去年同期值
  127. af := decimal.NewFromFloat(a)
  128. // 同比增速
  129. bf := decimal.NewFromFloat(b)
  130. // 默认1
  131. cf := decimal.NewFromFloat(1)
  132. // 总增速
  133. val := bf.Add(cf)
  134. // 计算
  135. result, _ = val.Mul(af).RoundCeil(4).Float64()
  136. } else {
  137. result = 0
  138. }
  139. return
  140. }
  141. // GetChartPredictEdbInfoDataListByRuleTc 根据同差值规则获取预测数据
  142. // 2.2 同差: 在未来某一个时间段内,给定一个固定的同比增加值a,用去年同期值X加上同比增加值A,得到预测值Y=X+a
  143. // 例: 今年1-3月值,100,100,120。给定同比增加值a=10,则明年1-3月预测值为: 100+10=110,100+10=110,120+10=130
  144. func GetChartPredictEdbInfoDataListByRuleTc(edbInfoId int, tcValue float64, startDate, endDate time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  145. allDataList := make([]*EdbInfoSearchData, 0)
  146. allDataList = append(allDataList, realPredictEdbInfoData...)
  147. allDataList = append(allDataList, predictEdbInfoData...)
  148. newPredictEdbInfoData = predictEdbInfoData
  149. index := len(allDataList)
  150. //获取后面的预测数据
  151. dayList := getPredictEdbDayList(startDate, endDate, frequency)
  152. predictEdbInfoData = make([]*EdbInfoSearchData, 0)
  153. for k, currentDate := range dayList {
  154. tmpData := &EdbInfoSearchData{
  155. EdbDataId: edbInfoId + 10000000000 + index + k,
  156. DataTime: currentDate.Format(utils.FormatDate),
  157. //Value: dataValue,
  158. }
  159. var val float64
  160. var calculateStatus bool //计算结果
  161. //currentItem := existMap[av]
  162. //上一年的日期
  163. preDate := currentDate.AddDate(-1, 0, 0)
  164. preDateStr := preDate.Format(utils.FormatDate)
  165. if preValue, ok := existMap[preDateStr]; ok { //上一年同期找到
  166. val = PredictTczDiv(preValue, tcValue)
  167. calculateStatus = true
  168. } else {
  169. switch frequency {
  170. case "月度":
  171. //向上和向下,各找一个月
  172. nextDateDay := preDate
  173. preDateDay := preDate
  174. for i := 0; i <= 35; i++ {
  175. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  176. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  177. val = PredictTczDiv(preValue, tcValue)
  178. calculateStatus = true
  179. break
  180. } else {
  181. preDateDayStr := preDateDay.Format(utils.FormatDate)
  182. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  183. val = PredictTczDiv(preValue, tcValue)
  184. calculateStatus = true
  185. break
  186. }
  187. }
  188. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  189. preDateDay = preDateDay.AddDate(0, 0, -1)
  190. }
  191. case "季度", "年度":
  192. if preValue, ok := existMap[preDateStr]; ok { //上一年同期->下一个月找到
  193. val = PredictTczDiv(preValue, tcValue)
  194. calculateStatus = true
  195. break
  196. }
  197. default:
  198. nextDateDay := preDate
  199. preDateDay := preDate
  200. for i := 0; i < 35; i++ {
  201. nextDateDayStr := nextDateDay.Format(utils.FormatDate)
  202. if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
  203. val = PredictTczDiv(preValue, tcValue)
  204. calculateStatus = true
  205. break
  206. } else {
  207. preDateDayStr := preDateDay.Format(utils.FormatDate)
  208. if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
  209. val = PredictTczDiv(preValue, tcValue)
  210. calculateStatus = true
  211. break
  212. } else {
  213. //fmt.Println("pre not find:", preDateStr, "i:", i)
  214. }
  215. }
  216. nextDateDay = nextDateDay.AddDate(0, 0, 1)
  217. preDateDay = preDateDay.AddDate(0, 0, -1)
  218. }
  219. }
  220. }
  221. if calculateStatus {
  222. tmpData.Value = val
  223. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  224. allDataList = append(allDataList, tmpData)
  225. existMap[tmpData.DataTime] = val
  226. // 最大最小值
  227. if val < minValue {
  228. minValue = val
  229. }
  230. if val > maxValue {
  231. maxValue = val
  232. }
  233. }
  234. }
  235. return
  236. }
  237. // PredictTczDiv 环差值计算
  238. // @params a float64 上一期值
  239. // @params b float64 固定的环比增加值
  240. func PredictTczDiv(a, b float64) (result float64) {
  241. if b != 0 {
  242. // 上一期值
  243. af := decimal.NewFromFloat(a)
  244. // 固定的环比增加值
  245. bf := decimal.NewFromFloat(b)
  246. // 计算
  247. result, _ = af.Add(bf).RoundCeil(4).Float64()
  248. } else {
  249. result = 0
  250. }
  251. return
  252. }
  253. // GetChartPredictEdbInfoDataListByRuleHb 根据环比值规则获取预测数据
  254. // 环比:在未来某一个时间段内,给定一个固定的环比增速a,用上一期值X乘以环比增速(1+a),得到预测值Y=X(1+a)
  255. // 例: 最近1期值为100,给定环比增速a=0.2,则未来3期预测值为: 100*1.2=120,120*1.2=144,144*1.2=172.8
  256. func GetChartPredictEdbInfoDataListByRuleHb(edbInfoId int, hbValue float64, startDate, endDate time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  257. allDataList := make([]*EdbInfoSearchData, 0)
  258. allDataList = append(allDataList, realPredictEdbInfoData...)
  259. allDataList = append(allDataList, predictEdbInfoData...)
  260. newPredictEdbInfoData = predictEdbInfoData
  261. index := len(allDataList)
  262. //获取后面的预测数据
  263. dayList := getPredictEdbDayList(startDate, endDate, frequency)
  264. for k, currentDate := range dayList {
  265. tmpK := index + k - 1 //上1期的值
  266. // 环比值计算
  267. val := PredictHbzDiv(allDataList[tmpK].Value, hbValue)
  268. currentDateStr := currentDate.Format(utils.FormatDate)
  269. tmpData := &EdbInfoSearchData{
  270. EdbDataId: edbInfoId + 10000000000 + index + k,
  271. DataTime: currentDateStr,
  272. Value: val,
  273. }
  274. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  275. allDataList = append(allDataList, tmpData)
  276. existMap[currentDateStr] = val
  277. // 最大最小值
  278. if val < minValue {
  279. minValue = val
  280. }
  281. if val > maxValue {
  282. maxValue = val
  283. }
  284. }
  285. return
  286. }
  287. // PredictHbzDiv 环比值计算
  288. // @params a float64 上一期值
  289. // @params b float64 固定的环比增速
  290. func PredictHbzDiv(a, b float64) (result float64) {
  291. if b != 0 {
  292. // 上一期值
  293. af := decimal.NewFromFloat(a)
  294. // 固定的环比增速
  295. bf := decimal.NewFromFloat(b)
  296. // 默认1
  297. cf := decimal.NewFromFloat(1)
  298. // 总增速
  299. val := bf.Add(cf)
  300. // 计算
  301. result, _ = val.Mul(af).RoundCeil(4).Float64()
  302. } else {
  303. result = 0
  304. }
  305. return
  306. }
  307. // GetChartPredictEdbInfoDataListByRuleHc 根据环差值规则获取预测数据
  308. // 2.4 环差:在未来某一个时间段内,给定一个固定的环比增加值a,用上一期值X加上环比增加值a,得到预测值Y=X+a
  309. // 例: 最近1期值为100,给定环比增加值a=10,则未来3期预测值为: 100+10=110,110+10=120,120+10=130
  310. func GetChartPredictEdbInfoDataListByRuleHc(edbInfoId int, hcValue float64, startDate, endDate time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  311. allDataList := make([]*EdbInfoSearchData, 0)
  312. allDataList = append(allDataList, realPredictEdbInfoData...)
  313. allDataList = append(allDataList, predictEdbInfoData...)
  314. newPredictEdbInfoData = predictEdbInfoData
  315. index := len(allDataList)
  316. //获取后面的预测数据
  317. dayList := getPredictEdbDayList(startDate, endDate, frequency)
  318. for k, currentDate := range dayList {
  319. tmpK := index + k - 1 //上1期的值
  320. // 环差别值计算
  321. val := PredictHczDiv(allDataList[tmpK].Value, hcValue)
  322. currentDateStr := currentDate.Format(utils.FormatDate)
  323. tmpData := &EdbInfoSearchData{
  324. EdbDataId: edbInfoId + 10000000000 + index + k,
  325. DataTime: currentDateStr,
  326. Value: val,
  327. }
  328. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  329. allDataList = append(allDataList, tmpData)
  330. existMap[currentDateStr] = val
  331. // 最大最小值
  332. if val < minValue {
  333. minValue = val
  334. }
  335. if val > maxValue {
  336. maxValue = val
  337. }
  338. }
  339. return
  340. }
  341. // PredictHczDiv 环差值计算
  342. // @params a float64 上一期值
  343. // @params b float64 固定的环比增加值
  344. func PredictHczDiv(a, b float64) (result float64) {
  345. if b != 0 {
  346. // 上一期值
  347. af := decimal.NewFromFloat(a)
  348. // 固定的环比增加值
  349. bf := decimal.NewFromFloat(b)
  350. // 计算
  351. result, _ = af.Add(bf).RoundCeil(4).Float64()
  352. } else {
  353. result = 0
  354. }
  355. return
  356. }
  357. // GetChartPredictEdbInfoDataListByRuleNMoveMeanValue 根据N期移动均值规则获取预测数据
  358. // 2.5 N期移动均值:在未来某一个时间段内,下一期值等于过去N期值得平均值。
  359. // 例:最近3期值(N=3),为95,98,105则未来第1期值为 1/3*(95+98+105)=99.33, 未来第2期值为 1/3*(98+105+99.33)=100.78依次类推。
  360. func GetChartPredictEdbInfoDataListByRuleNMoveMeanValue(edbInfoId int, nValue int, startDate, endDate time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  361. allDataList := make([]*EdbInfoSearchData, 0)
  362. allDataList = append(allDataList, realPredictEdbInfoData...)
  363. allDataList = append(allDataList, predictEdbInfoData...)
  364. newPredictEdbInfoData = predictEdbInfoData
  365. lenAllData := len(allDataList)
  366. if lenAllData < nValue || lenAllData <= 0 {
  367. return
  368. }
  369. if nValue <= 0 {
  370. return
  371. }
  372. // 分母
  373. decimalN := decimal.NewFromInt(int64(nValue))
  374. //获取后面的预测数据
  375. dayList := getPredictEdbDayList(startDate, endDate, frequency)
  376. for k, currentDate := range dayList {
  377. tmpIndex := lenAllData + k - 1 //上1期的值
  378. // 数据集合中的最后一个数据
  379. tmpDecimalVal := decimal.NewFromFloat(allDataList[tmpIndex].Value)
  380. for tmpK := 2; tmpK <= nValue; tmpK++ {
  381. tmpIndex2 := tmpIndex - tmpK //上N期的值
  382. tmpDecimalVal2 := decimal.NewFromFloat(allDataList[tmpIndex2].Value)
  383. tmpDecimalVal = tmpDecimalVal.Add(tmpDecimalVal2)
  384. }
  385. // N期移动均值计算
  386. val, _ := tmpDecimalVal.Div(decimalN).RoundCeil(4).Float64()
  387. currentDateStr := currentDate.Format(utils.FormatDate)
  388. tmpData := &EdbInfoSearchData{
  389. EdbDataId: edbInfoId + 10000000000 + lenAllData + k,
  390. DataTime: currentDateStr,
  391. Value: val,
  392. }
  393. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  394. allDataList = append(allDataList, tmpData)
  395. existMap[currentDateStr] = val
  396. // 最大最小值
  397. if val < minValue {
  398. minValue = val
  399. }
  400. if val > maxValue {
  401. maxValue = val
  402. }
  403. }
  404. return
  405. }
  406. // GetChartPredictEdbInfoDataListByRuleNLinearRegression 根据N期移动均值规则获取预测数据
  407. // 2.6N期段线性外推值:给出过去N期值所确定的线性回归方程(Y=aX+b)在未来一段时间内的推算值。回归方程虽然比较复杂,但各种编程语言应该都有现成的模块或函数,应该无需自己编写。
  408. // 例1:过去5期值(N=5)分别为:3,5,7,9,11(每两期值之间的时间间隔相等)。那么按照线性回归方程推算,未来三期的预测值是:13,15,17。
  409. //
  410. // 例2:过去6期值(N=6)分别为:3,3,5,7,9,11(每两期值之间的时间间隔相等)。那么按照线性回归方程推算,未来三期的预测值是:12.33,14.05,15.76。例1和例2的区别在于,多加了一期数据,导致回归方程发生改变,从而预测值不同。
  411. func GetChartPredictEdbInfoDataListByRuleNLinearRegression(edbInfoId int, nValue int, startDate, endDate time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64, err error) {
  412. //var errMsg string
  413. //defer func() {
  414. // if errMsg != `` {
  415. // go alarm_msg.SendAlarmMsg("更新上海的token失败;ERR:"+err.Error(), 3)
  416. // }
  417. //}()
  418. allDataList := make([]*EdbInfoSearchData, 0)
  419. allDataList = append(allDataList, realPredictEdbInfoData...)
  420. allDataList = append(allDataList, predictEdbInfoData...)
  421. newPredictEdbInfoData = predictEdbInfoData
  422. lenAllData := len(allDataList)
  423. if lenAllData < nValue || lenAllData <= 0 {
  424. return
  425. }
  426. if nValue <= 1 {
  427. return
  428. }
  429. //获取后面的预测数据
  430. // 获取线性方程公式的a、b的值
  431. coordinateData := make([]Coordinate, 0)
  432. for tmpK := nValue; tmpK > 0; tmpK-- {
  433. tmpIndex2 := lenAllData - tmpK //上N期的值
  434. tmpCoordinate := Coordinate{
  435. X: float64(nValue - tmpK + 1),
  436. Y: allDataList[tmpIndex2].Value,
  437. }
  438. coordinateData = append(coordinateData, tmpCoordinate)
  439. }
  440. a, b := getLinearResult(coordinateData)
  441. if math.IsNaN(a) || math.IsNaN(b) {
  442. err = errors.New("线性方程公式生成失败")
  443. return
  444. }
  445. //fmt.Println("a:", a, ";======b:", b)
  446. aDecimal := decimal.NewFromFloat(a)
  447. bDecimal := decimal.NewFromFloat(b)
  448. dayList := getPredictEdbDayList(startDate, endDate, frequency)
  449. for k, currentDate := range dayList {
  450. tmpK := nValue + k + 1
  451. xDecimal := decimal.NewFromInt(int64(tmpK))
  452. val, _ := aDecimal.Mul(xDecimal).Add(bDecimal).RoundCeil(4).Float64()
  453. currentDateStr := currentDate.Format(utils.FormatDate)
  454. tmpData := &EdbInfoSearchData{
  455. EdbDataId: edbInfoId + 10000000000 + lenAllData + k,
  456. DataTime: currentDateStr,
  457. Value: val,
  458. }
  459. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  460. allDataList = append(allDataList, tmpData)
  461. existMap[currentDateStr] = val
  462. // 最大最小值
  463. if val < minValue {
  464. minValue = val
  465. }
  466. if val > maxValue {
  467. maxValue = val
  468. }
  469. }
  470. return
  471. }
  472. // Series is a container for a series of data
  473. type Series []Coordinate
  474. // Coordinate holds the data in a series
  475. type Coordinate struct {
  476. X, Y float64
  477. }
  478. func getLinearResult(s []Coordinate) (gradient, intercept float64) {
  479. if len(s) <= 1 {
  480. return
  481. }
  482. // Placeholder for the math to be done
  483. var sum [5]float64
  484. // Loop over data keeping index in place
  485. i := 0
  486. for ; i < len(s); i++ {
  487. sum[0] += s[i].X
  488. sum[1] += s[i].Y
  489. sum[2] += s[i].X * s[i].X
  490. sum[3] += s[i].X * s[i].Y
  491. sum[4] += s[i].Y * s[i].Y
  492. }
  493. // Find gradient and intercept
  494. f := float64(i)
  495. gradient = (f*sum[3] - sum[0]*sum[1]) / (f*sum[2] - sum[0]*sum[0])
  496. intercept = (sum[1] / f) - (gradient * sum[0] / f)
  497. //fmt.Println("gradient:", gradient, ";intercept:", intercept)
  498. // Create the new regression series
  499. //for j := 0; j < len(s); j++ {
  500. // regressions = append(regressions, Coordinate{
  501. // X: s[j].X,
  502. // Y: s[j].X*gradient + intercept,
  503. // })
  504. //}
  505. return
  506. }
  507. // GetChartPredictEdbInfoDataListByRuleTrendsHC 根据动态环比增加值的计算规则获取预测数据
  508. // 研究员有对预测指标进行动态环差计算的需求,即预测指标使用环差规则进行预测时,环比增加值不是固定值,而是由几个预测指标计算得出的动态变化的值;
  509. //需求说明:
  510. //1、增加“动态环差”预测规则;
  511. //2、环比增加值在弹窗设置;
  512. //3、动态环差预测举例:
  513. //指标A实际最新数据为2022-10-27(100);
  514. //预测指标B预测数据为2022-10-28(240)、2022-10-29(300);
  515. //预测指标C预测数据为2022-10-28(260)、2022-10-29(310);
  516. //计算公式为B-C;
  517. //则指标A至2022-10-29的预测值为2022-10-28(100+(240-260)=80)、2022-10-29(80+(300-310)=90);
  518. //注:动态环比增加值的计算遵从计算指标的计算规则,即用于计算的指标若有部分指标缺少部分日期数据,则这部分日期数据不做计算,为空;若动态环比增加值某一天为空,则往前追溯最近一期有值的环比增加值作为该天的数值参与计算;
  519. func GetChartPredictEdbInfoDataListByRuleTrendsHC(edbInfoId, configId int, startDate, endDate time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  520. allDataList := make([]*EdbInfoSearchData, 0)
  521. allDataList = append(allDataList, realPredictEdbInfoData...)
  522. allDataList = append(allDataList, predictEdbInfoData...)
  523. newPredictEdbInfoData = predictEdbInfoData
  524. lenAllData := len(allDataList)
  525. if lenAllData <= 0 {
  526. return
  527. }
  528. hcDataMap := make(map[string]float64) //规则计算的环差值map
  529. tmpPredictEdbRuleDataList, err := GetPredictEdbRuleDataItemList(edbInfoId, configId, startDate.Format(utils.FormatDate), endDate.Format(utils.FormatDate))
  530. if err != nil {
  531. return
  532. }
  533. for _, v := range tmpPredictEdbRuleDataList {
  534. hcDataMap[v.DataTime] = v.Value
  535. }
  536. dayList := getPredictEdbDayList(startDate, endDate, frequency)
  537. for k, currentDate := range dayList {
  538. // 最近一条数据
  539. tmpLenAllDataList := len(allDataList)
  540. lastValue := allDataList[tmpLenAllDataList-1].Value
  541. // 动态环差值数据
  542. currentDateStr := currentDate.Format(utils.FormatDate)
  543. hcVal, ok := hcDataMap[currentDateStr]
  544. if !ok {
  545. continue
  546. }
  547. lastValueDecimal := decimal.NewFromFloat(lastValue)
  548. hcValDecimal := decimal.NewFromFloat(hcVal)
  549. val, _ := lastValueDecimal.Add(hcValDecimal).RoundCeil(4).Float64()
  550. tmpData := &EdbInfoSearchData{
  551. EdbDataId: edbInfoId + 10000000000 + lenAllData + k,
  552. //EdbInfoId: edbInfoId,
  553. DataTime: currentDateStr,
  554. Value: val,
  555. //DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  556. }
  557. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  558. allDataList = append(allDataList, tmpData)
  559. existMap[currentDateStr] = val
  560. // 最大最小值
  561. if val < minValue {
  562. minValue = val
  563. }
  564. if val > maxValue {
  565. maxValue = val
  566. }
  567. }
  568. return
  569. }
  570. // GetChartPredictEdbInfoDataListByRuleFinalValueHc 根据 给定终值后插值 规则获取预测数据
  571. // 项目背景:
  572. //假设螺纹产量在2023年1月1号的预测值是255万吨,从当下到2023年1月1号,螺纹产量将会线性变化,那么每一期的螺纹产量是多少?
  573. //算法:从当下(2022/10/28)到2023/1/1号,一共65天,从当前值(305.02)到255,差值-50.02,
  574. //则每日环差为-50.02/65=-0.7695。因为数据点是周度频率,每周环差为,-0.3849*7=-5.3868。
  575. //从以上计算过程可看出,“给定终值后差值”的算法,是在“环差”算法的基础上,做的一个改动。即这个”环差值”=【(终值-最新值)/终值与最新值得日期差】*数据频率
  576. //需求说明:
  577. //1、增加一个预测规则,名为“给定终值后插值”,给定预测截止日期和预测终值,计算最新数据日期至预测截止日期的时间差T,计算最新数据和预测终值的数据差S,数据频率与指标频度有关,日度=1,周度=7,旬度=10,月度=30,季度=90,年度=365,环差值=S/T*频率,预测数值=前一天数值+环差值;
  578. //2、最新数据值和日期改动后,需重新计算环差值和预测数值;
  579. func GetChartPredictEdbInfoDataListByRuleFinalValueHc(edbInfoId int, finalValue float64, startDate, endDate time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*EdbInfoSearchData, existMap map[string]float64) (newPredictEdbInfoData []*EdbInfoSearchData, minValue, maxValue float64) {
  580. allDataList := make([]*EdbInfoSearchData, 0)
  581. allDataList = append(allDataList, realPredictEdbInfoData...)
  582. allDataList = append(allDataList, predictEdbInfoData...)
  583. newPredictEdbInfoData = predictEdbInfoData
  584. index := len(allDataList)
  585. //获取后面的预测日期
  586. dayList := getPredictEdbDayList(startDate, endDate, frequency)
  587. lenDay := len(dayList)
  588. if lenDay <= 0 {
  589. return
  590. }
  591. var hcValue float64
  592. lastValueDeciamal := decimal.NewFromFloat(allDataList[index-1].Value) // 实际数据的最后一个值
  593. finalValueDeciamal := decimal.NewFromFloat(finalValue) // 给定的终止数据
  594. dayDecimal := decimal.NewFromInt(int64(lenDay)) // 需要作为分母的期数
  595. hcValue, _ = finalValueDeciamal.Sub(lastValueDeciamal).Div(dayDecimal).Float64() // 计算出来的环差值
  596. //获取后面的预测数据
  597. predictEdbInfoData = make([]*EdbInfoSearchData, 0)
  598. lastK := lenDay - 1 // 最后的日期
  599. for k, currentDate := range dayList {
  600. tmpK := index + k - 1 //上1期的值
  601. var val float64
  602. // 环差别值计算
  603. if k == lastK { //如果是最后一天,那么就用最终值,否则就计算
  604. val = finalValue
  605. } else {
  606. val = PredictHczDiv(allDataList[tmpK].Value, hcValue)
  607. }
  608. currentDateStr := currentDate.Format(utils.FormatDate)
  609. tmpData := &EdbInfoSearchData{
  610. EdbDataId: edbInfoId + 10000000000 + index + k,
  611. //EdbInfoId: edbInfoId,
  612. DataTime: currentDateStr,
  613. Value: val,
  614. //DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
  615. }
  616. newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
  617. allDataList = append(allDataList, tmpData)
  618. existMap[currentDateStr] = val
  619. // 最大最小值
  620. if val < minValue {
  621. minValue = val
  622. }
  623. if val > maxValue {
  624. maxValue = val
  625. }
  626. }
  627. return
  628. }