predict_edb_data_calculate_nh.go 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366
  1. package models
  2. import (
  3. "errors"
  4. "fmt"
  5. "github.com/beego/beego/v2/client/orm"
  6. "github.com/shopspring/decimal"
  7. "hongze/hongze_edb_lib/utils"
  8. "strconv"
  9. "strings"
  10. "time"
  11. )
  12. // SavePredictCalculateNh 预测年化值
  13. func SavePredictCalculateNh(reqEdbInfoId, classifyId int, edbName, frequency, unit, formula string, fromEdbInfo *EdbInfo, edbCode, uniqueCode string, sysUserId int, sysUserRealName string) (edbInfo *EdbInfo, latestDateStr string, latestValue float64, err error, errMsg string) {
  14. o := orm.NewOrm()
  15. to, err := o.Begin()
  16. if err != nil {
  17. return
  18. }
  19. defer func() {
  20. if err != nil {
  21. fmt.Println("SavePredictCalculateNh,Err:" + err.Error())
  22. _ = to.Rollback()
  23. } else {
  24. _ = to.Commit()
  25. }
  26. }()
  27. fmt.Println("reqEdbInfoId:", reqEdbInfoId)
  28. if reqEdbInfoId <= 0 {
  29. edbInfo = &EdbInfo{
  30. //EdbInfoId: 0,
  31. EdbInfoType: 1,
  32. SourceName: utils.DATA_SOURCE_NAME_PREDICT_CALCULATE_NH,
  33. Source: utils.DATA_SOURCE_PREDICT_CALCULATE_NH,
  34. EdbCode: edbCode,
  35. EdbName: edbName,
  36. EdbNameSource: edbName,
  37. Frequency: frequency,
  38. Unit: unit,
  39. //StartDate: "",
  40. //EndDate: "",
  41. ClassifyId: classifyId,
  42. SysUserId: sysUserId,
  43. SysUserRealName: sysUserRealName,
  44. UniqueCode: uniqueCode,
  45. CreateTime: time.Now(),
  46. ModifyTime: time.Now(),
  47. MinValue: 0,
  48. MaxValue: 0,
  49. CalculateFormula: formula,
  50. EdbType: 2,
  51. Sort: 0,
  52. MoveType: 0,
  53. MoveFrequency: "",
  54. NoUpdate: 0,
  55. ServerUrl: "",
  56. EdbNameEn: "",
  57. UnitEn: "",
  58. LatestDate: "",
  59. LatestValue: 0,
  60. ChartImage: "",
  61. }
  62. newEdbInfoId, tmpErr := to.Insert(edbInfo)
  63. if tmpErr != nil {
  64. err = tmpErr
  65. return
  66. }
  67. edbInfo.EdbInfoId = int(newEdbInfoId)
  68. // 添加关联关系
  69. {
  70. calculateMappingItem := &EdbInfoCalculateMapping{
  71. EdbInfoCalculateMappingId: 0,
  72. EdbInfoId: edbInfo.EdbInfoId,
  73. Source: edbInfo.Source,
  74. SourceName: edbInfo.SourceName,
  75. EdbCode: edbCode,
  76. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  77. FromEdbCode: fromEdbInfo.EdbCode,
  78. FromEdbName: fromEdbInfo.EdbName,
  79. FromSource: fromEdbInfo.Source,
  80. FromSourceName: fromEdbInfo.SourceName,
  81. FromTag: "",
  82. Sort: 1,
  83. CreateTime: time.Now(),
  84. ModifyTime: time.Now(),
  85. }
  86. _, err = to.Insert(calculateMappingItem)
  87. if err != nil {
  88. return
  89. }
  90. }
  91. } else {
  92. edbInfo, err = GetEdbInfoById(reqEdbInfoId)
  93. if err != nil {
  94. if err.Error() == utils.ErrNoRow() {
  95. errMsg = `获取指标信息失败`
  96. }
  97. return
  98. }
  99. if edbInfo.EdbInfoType != 1 {
  100. errMsg = `该指标不是预测指标`
  101. err = errors.New(errMsg)
  102. return
  103. }
  104. latestDateStr = edbInfo.LatestDate
  105. latestValue = edbInfo.LatestValue
  106. //判断计算指标是否被更换
  107. var existCondition string
  108. var existPars []interface{}
  109. existCondition += " AND edb_info_id=? AND from_edb_info_id=? "
  110. existPars = append(existPars, edbInfo.EdbInfoId, fromEdbInfo.EdbInfoId)
  111. count, tmpErr := GetEdbInfoCalculateCountByCondition(existCondition, existPars)
  112. if tmpErr != nil {
  113. err = errors.New("判断指标是否改变失败,Err:" + tmpErr.Error())
  114. return
  115. }
  116. if count > 0 { // 指标未被替换,无需重新计算
  117. return
  118. }
  119. //删除,计算指标关联的,基础指标的关联关系
  120. sql := ` DELETE FROM edb_info_calculate_mapping WHERE edb_info_id = ? `
  121. _, err = to.Raw(sql, edbInfo.EdbInfoId).Exec()
  122. if err != nil {
  123. err = errors.New("删除计算指标关联关系失败,Err:" + err.Error())
  124. return
  125. }
  126. //清空原有已经入库的数据
  127. tableName := GetEdbDataTableName(edbInfo.Source)
  128. sql = ` DELETE FROM ` + tableName + ` WHERE edb_info_id = ? `
  129. _, err = to.Raw(sql, edbInfo.EdbInfoId).Exec()
  130. if err != nil {
  131. return
  132. }
  133. //关联关系
  134. {
  135. calculateMappingItem := &EdbInfoCalculateMapping{
  136. EdbInfoCalculateMappingId: 0,
  137. EdbInfoId: edbInfo.EdbInfoId,
  138. Source: edbInfo.Source,
  139. SourceName: edbInfo.SourceName,
  140. EdbCode: edbCode,
  141. FromEdbInfoId: fromEdbInfo.EdbInfoId,
  142. FromEdbCode: fromEdbInfo.EdbCode,
  143. FromEdbName: fromEdbInfo.EdbName,
  144. FromSource: fromEdbInfo.Source,
  145. FromSourceName: fromEdbInfo.SourceName,
  146. FromTag: "",
  147. Sort: 1,
  148. CreateTime: time.Now(),
  149. ModifyTime: time.Now(),
  150. }
  151. _, err = to.Insert(calculateMappingItem)
  152. if err != nil {
  153. return
  154. }
  155. }
  156. }
  157. // 计算数据
  158. latestDateStr, latestValue, err = refreshAllPredictCalculateNh(to, edbInfo.EdbInfoId, edbInfo.Source, fromEdbInfo, edbCode)
  159. return
  160. }
  161. // RefreshAllPredictCalculateNh 刷新全部预测年化值数据
  162. func RefreshAllPredictCalculateNh(edbInfoId, source int, fromEdbInfo *EdbInfo, edbCode, edbFrequency, formula string) (latestDateStr string, latestValue float64, err error) {
  163. o := orm.NewOrm()
  164. to, err := o.Begin()
  165. if err != nil {
  166. return
  167. }
  168. defer func() {
  169. if err != nil {
  170. fmt.Println("RefreshAllCalculateNh,Err:" + err.Error())
  171. _ = to.Rollback()
  172. } else {
  173. _ = to.Commit()
  174. }
  175. }()
  176. // 计算数据
  177. latestDateStr, latestValue, err = refreshAllPredictCalculateNh(to, edbInfoId, source, fromEdbInfo, edbCode)
  178. return
  179. }
  180. // refreshAllPredictCalculateNh 刷新预测年化数据
  181. func refreshAllPredictCalculateNh(to orm.TxOrmer, edbInfoId, source int, fromEdbInfo *EdbInfo, edbCode string) (latestDateStr string, latestValue float64, err error) {
  182. edbInfoIdStr := strconv.Itoa(edbInfoId)
  183. tableName := GetEdbDataTableName(utils.DATA_SOURCE_PREDICT_CALCULATE_NH)
  184. //获取年化指标所有数据
  185. existDataList, err := GetAllEdbDataListByTo(to, edbInfoId, source)
  186. if err != nil {
  187. return
  188. }
  189. //计算指标的map
  190. existDataMap := make(map[string]*EdbData, 0)
  191. removeDateMap := make(map[string]string)
  192. for _, v := range existDataList {
  193. existDataMap[v.DataTime] = v
  194. removeDateMap[v.DataTime] = ``
  195. }
  196. //获取源指标数据
  197. fmt.Println("EdbInfoId:", fromEdbInfo.EdbInfoId)
  198. fromDataList, err := GetPredictEdbDataListAll(fromEdbInfo, 1)
  199. if err != nil {
  200. return
  201. }
  202. // 插值法数据处理
  203. handleDataMap := make(map[string]float64)
  204. _, err = HandleDataByLinearRegression(fromDataList, handleDataMap)
  205. if err != nil {
  206. return
  207. }
  208. var dateArr []string
  209. dataMap := make(map[string]*EdbInfoSearchData)
  210. fromDataMap := make(map[string]float64)
  211. //来源指指标数据
  212. for _, v := range fromDataList {
  213. dateArr = append(dateArr, v.DataTime)
  214. dataMap[v.DataTime] = v
  215. fromDataMap[v.DataTime] = v.Value
  216. }
  217. lenFromDataList := len(fromDataList)
  218. // 如果来源指标没有数据,那么就直接返回得了
  219. if lenFromDataList <= 0 {
  220. sql := fmt.Sprintf(` DELETE FROM %s WHERE edb_info_id = ? `, tableName)
  221. _, err = to.Raw(sql, edbInfoId).Exec()
  222. if err != nil {
  223. err = fmt.Errorf("删除年化指标数据失败,Err:" + err.Error())
  224. return
  225. }
  226. return
  227. }
  228. fmt.Println("source:", source)
  229. // 真实数据的最后日期
  230. latestDateStr = fromEdbInfo.LatestDate
  231. // 每年的最后一天的数据值
  232. yearLastValMap := make(map[int]float64)
  233. startDataTime, _ := time.ParseInLocation(utils.FormatDate, fromDataList[0].DataTime, time.Local)
  234. endDataTime, _ := time.ParseInLocation(utils.FormatDate, fromDataList[lenFromDataList-1].DataTime, time.Local)
  235. for i := startDataTime.Year(); i <= endDataTime.Year(); i++ {
  236. tmpDateStr := fmt.Sprintf("%d-12-31", i)
  237. if tmpVal, ok := handleDataMap[tmpDateStr]; ok {
  238. yearLastValMap[i] = tmpVal
  239. }
  240. }
  241. addSql := ` INSERT INTO ` + tableName + ` (edb_info_id,edb_code,data_time,value,create_time,modify_time,data_timestamp) values `
  242. var isAdd bool
  243. //来源指指标数据
  244. for _, v := range fromDataList {
  245. currDateStr := v.DataTime
  246. currDate, _ := time.ParseInLocation(utils.FormatDate, currDateStr, time.Local)
  247. perValMap := make(map[time.Time]float64)
  248. //前3年当日的数据
  249. for i := 1; i <= 3; i++ {
  250. tmpDateTime := currDate.AddDate(-i, 0, 0)
  251. if tmpVal, ok := handleDataMap[tmpDateTime.Format(utils.FormatDate)]; ok {
  252. perValMap[tmpDateTime] = tmpVal
  253. }
  254. }
  255. lenPerValMap := len(perValMap)
  256. // 如果数据少于2年,那么就不参与计算,结束当前循环,进入下一个循环
  257. if lenPerValMap < 2 {
  258. continue
  259. }
  260. // N年 当前值占全年比重 的值列表
  261. divValList := make([]decimal.Decimal, 0)
  262. for tmpDateTime, tmpVal := range perValMap {
  263. yearLastVal, ok2 := yearLastValMap[tmpDateTime.Year()]
  264. // 如果当年最后一天没有数据
  265. if !ok2 {
  266. continue
  267. }
  268. // 当前值占全年比重
  269. divVal := decimal.NewFromFloat(tmpVal).Div(decimal.NewFromFloat(yearLastVal))
  270. divValList = append(divValList, divVal)
  271. }
  272. lenDivValList := len(divValList)
  273. // 如果 N年 当前值占全年比重 的值 小于 2个,那么就不参与计算,结束当前循环,进入下一个循环
  274. if lenDivValList < 2 {
  275. continue
  276. }
  277. divValSum := decimal.NewFromFloat(0)
  278. for _, divVal := range divValList {
  279. divValSum = divValSum.Add(divVal)
  280. }
  281. // 当前计算出来的结果
  282. currVal, _ := decimal.NewFromFloat(v.Value).Div(divValSum.Div(decimal.NewFromInt(int64(lenDivValList)))).Round(4).Float64()
  283. // 给实际日期数据的值赋值
  284. if fromEdbInfo.LatestDate == currDateStr {
  285. latestValue = currVal
  286. }
  287. // 判断年化指标是否存在数据
  288. if existData, ok := existDataMap[currDateStr]; ok {
  289. // 处理年化数据的值
  290. existValStr := existData.Value
  291. existValDeci, tmpErr := decimal.NewFromString(existValStr)
  292. if tmpErr != nil {
  293. err = tmpErr
  294. return
  295. }
  296. existVal, _ := existValDeci.Round(4).Float64()
  297. // 判断年化数据的值 与 当前计算出来的结果, 如果两个数据结果不相等的话,那么就修改咯
  298. if existVal != currVal {
  299. err = ModifyEdbDataById(source, existData.EdbDataId, fmt.Sprint(currVal))
  300. if err != nil {
  301. return
  302. }
  303. }
  304. } else {
  305. // 直接入库
  306. timestamp := currDate.UnixNano() / 1e6
  307. timestampStr := fmt.Sprintf("%d", timestamp)
  308. addSql += GetAddSql(edbInfoIdStr, edbCode, currDateStr, timestampStr, fmt.Sprint(currVal))
  309. isAdd = true
  310. }
  311. delete(removeDateMap, currDateStr)
  312. }
  313. if isAdd {
  314. addSql = strings.TrimRight(addSql, ",")
  315. _, err = to.Raw(addSql).Exec()
  316. }
  317. // 移除不存在的日期数据
  318. if len(removeDateMap) > 0 {
  319. removeDateList := make([]string, 0) //需要移除的日期
  320. for k := range removeDateMap {
  321. removeDateList = append(removeDateList, k)
  322. }
  323. removeDateStr := strings.Join(removeDateList, `","`)
  324. removeDateStr = `"` + removeDateStr + `"`
  325. sql := fmt.Sprintf(` DELETE FROM %s WHERE edb_info_id = ? and data_time in (%s) `, tableName, removeDateStr)
  326. _, err = to.Raw(sql, edbInfoId).Exec()
  327. if err != nil {
  328. err = fmt.Errorf("删除年化指标数据失败,Err:" + err.Error())
  329. return
  330. }
  331. }
  332. return
  333. }