calculate.go 4.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143
  1. package utils
  2. import (
  3. "github.com/shopspring/decimal"
  4. "math"
  5. )
  6. // Series is a container for a series of data
  7. type Series []Coordinate
  8. // Coordinate holds the data in a series
  9. type Coordinate struct {
  10. X, Y float64
  11. }
  12. // GetLinearResult 生成线性方程式
  13. func GetLinearResult(s []Coordinate) (gradient, intercept float64) {
  14. if len(s) <= 1 {
  15. return
  16. }
  17. // Placeholder for the math to be done
  18. var sum [5]float64
  19. // Loop over data keeping index in place
  20. i := 0
  21. for ; i < len(s); i++ {
  22. sum[0] += s[i].X
  23. sum[1] += s[i].Y
  24. sum[2] += s[i].X * s[i].X
  25. sum[3] += s[i].X * s[i].Y
  26. sum[4] += s[i].Y * s[i].Y
  27. }
  28. // Find gradient and intercept
  29. f := float64(i)
  30. gradient = (f*sum[3] - sum[0]*sum[1]) / (f*sum[2] - sum[0]*sum[0])
  31. intercept = (sum[1] / f) - (gradient * sum[0] / f)
  32. //fmt.Println("gradient:", gradient, ";intercept:", intercept)
  33. // Create the new regression series
  34. //for j := 0; j < len(s); j++ {
  35. // regressions = append(regressions, Coordinate{
  36. // X: s[j].X,
  37. // Y: s[j].X*gradient + intercept,
  38. // })
  39. //}
  40. return
  41. }
  42. // ComputeCorrelation 通过一组数据获取相关系数R
  43. // 计算步骤
  44. // 1.分别计算两个序列的平均值Mx和My
  45. // 2.分别计算两个序列的标准偏差SDx和SDy => √{1/(n-1)*SUM[(Xi-Mx)²]}
  46. // 3.计算相关系数 => SUM[(Xi-Mx)*(Yi-My)]/[(N-1)(SDx*SDy)]
  47. func ComputeCorrelation(sList []Coordinate) (r float64) {
  48. var xBar, yBar float64
  49. lenSList := len(sList)
  50. // 必须两组数据及两组以上的数据才能计算
  51. if lenSList < 2 {
  52. return
  53. }
  54. decimalX := decimal.NewFromFloat(0)
  55. decimalY := decimal.NewFromFloat(0)
  56. // 计算两组数据X、Y的平均值
  57. for _, coordinate := range sList {
  58. decimalX = decimalX.Add(decimal.NewFromFloat(coordinate.X))
  59. decimalY = decimalY.Add(decimal.NewFromFloat(coordinate.Y))
  60. }
  61. xBar, _ = decimalX.Div(decimal.NewFromInt(int64(lenSList))).Round(4).Float64()
  62. yBar, _ = decimalY.Div(decimal.NewFromInt(int64(lenSList))).Round(4).Float64()
  63. //fmt.Println(xBar)
  64. //fmt.Println(yBar)
  65. varXDeci := decimal.NewFromFloat(0)
  66. varYDeci := decimal.NewFromFloat(0)
  67. ssrDeci := decimal.NewFromFloat(0)
  68. for _, coordinate := range sList {
  69. // 分别计算X、Y的实际数据与平均值的差值
  70. diffXXbarDeci := decimal.NewFromFloat(coordinate.X).Sub(decimal.NewFromFloat(xBar))
  71. diffYYbarDeci := decimal.NewFromFloat(coordinate.Y).Sub(decimal.NewFromFloat(yBar))
  72. ssrDeci = ssrDeci.Add(diffXXbarDeci.Mul(diffYYbarDeci))
  73. //fmt.Println("i:", i, ";diffXXbar:", diffXXbarDeci.String(), ";diffYYbar:", diffYYbarDeci.String(), ";ssr:", ssrDeci.String())
  74. varXDeci = varXDeci.Add(diffXXbarDeci.Mul(diffXXbarDeci))
  75. varYDeci = varYDeci.Add(diffYYbarDeci.Mul(diffYYbarDeci))
  76. //varY += diffYYbar ** 2
  77. }
  78. //当输入的两个数组完全相同时,计算相关系数会导致除以零的操作,从而产生 NaN(Not a Number)的结果。为了避免这种情况,可以在计算相关系数之前先进行一个判断,如果两个数组的标准差为零,则相关系数应为1
  79. if varXDeci.IsZero() && varYDeci.IsZero() {
  80. r = 1
  81. return
  82. }
  83. sqrtVal, _ := varXDeci.Mul(varYDeci).Round(4).Float64()
  84. //fmt.Println("sqrtVal:", sqrtVal)
  85. sst := math.Sqrt(sqrtVal) // 平方根
  86. //fmt.Println("sst:", sst)
  87. // 如果计算出来的平方根是0,那么就直接返回,因为0不能作为除数
  88. if sst == 0 {
  89. return
  90. }
  91. r, _ = ssrDeci.Div(decimal.NewFromFloat(sst)).Round(4).Float64()
  92. return
  93. }
  94. // CalculationDecisive 通过一组数据获取决定系数R2
  95. func CalculationDecisive(sList []Coordinate) (r2 float64) {
  96. r := ComputeCorrelation(sList)
  97. r2, _ = decimal.NewFromFloat(r).Mul(decimal.NewFromFloat(r)).Round(4).Float64()
  98. return
  99. }
  100. // CalculateStandardDeviation 计算标准差
  101. func CalculateStandardDeviation(data []float64) float64 {
  102. // 计算平均值
  103. mean := calculateMean(data)
  104. // 计算方差
  105. variance := calculateVariance(data, mean)
  106. return math.Sqrt(variance)
  107. }
  108. // 计算平均值
  109. func calculateMean(data []float64) float64 {
  110. sum := 0.0
  111. for _, value := range data {
  112. sum += value
  113. }
  114. return sum / float64(len(data))
  115. }
  116. // 计算方差
  117. func calculateVariance(data []float64, mean float64) float64 {
  118. sumSquaredDiff := 0.0
  119. for _, value := range data {
  120. diff := value - mean
  121. sumSquaredDiff += diff * diff
  122. }
  123. return sumSquaredDiff / float64(len(data))
  124. }