predict_edb.go 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459
  1. package models
  2. import (
  3. "encoding/json"
  4. "errors"
  5. "eta_gn/eta_index_lib/global"
  6. "eta_gn/eta_index_lib/utils"
  7. "fmt"
  8. "github.com/dengsgo/math-engine/engine"
  9. "github.com/shopspring/decimal"
  10. "gorm.io/gorm"
  11. "strings"
  12. "time"
  13. )
  14. // CalculateRule 预测指标 规则 计算
  15. type CalculateRule struct {
  16. EdbInfoId int `description:"指标id"`
  17. ConfigId int `description:"配置id"`
  18. TrendsCalculateMappingList []*PredictEdbConfCalculateMapping
  19. EdbInfoList []*EdbInfo
  20. EdbInfoIdBytes []string
  21. Formula string
  22. RuleType int `description:"预测规则,1:最新,2:固定值,3:同比,4:同差,5:环比,6:环差,7:N期移动均值,8:N期段线性外推值,9:动态环差"`
  23. EndDate string `description:"截止日期"`
  24. EdbInfoIdArr []EdbInfoFromTag `description:"指标信息"`
  25. EmptyType int `description:"空值处理类型(0查找前后35天,1不计算,2前值填充,3后值填充,4等于0)"`
  26. MaxEmptyType int `description:"MAX、MIN公式空值处理类型(1、等于0;2、跳过空值)"`
  27. }
  28. // RefreshCalculateByRuleBy9 刷新计算
  29. func RefreshCalculateByRuleBy9(rule CalculateRule) (resultDataList []*EdbInfoSearchData, err error) {
  30. to := global.DEFAULT_DmSQL.Begin()
  31. defer func() {
  32. if err != nil {
  33. to.Rollback()
  34. } else {
  35. to.Commit()
  36. }
  37. }()
  38. resultDataList, err = CalculateByRuleBy9(to, rule)
  39. return
  40. }
  41. // CalculateByRuleBy9 动态环差规则计算入库
  42. func CalculateByRuleBy9(to *gorm.DB, rule CalculateRule) (resultDataList []*EdbInfoSearchData, err error) {
  43. realSaveDataMap := make(map[string]map[int]float64)
  44. saveDataMap := make(map[string]map[int]float64)
  45. // 最小的结束日期 , 最晚的数据开始日期
  46. var minLatestDate, maxStartDate time.Time
  47. dateList := make([]string, 0) // 第一个指标的日期数据
  48. formulaStr := strings.ToUpper(rule.Formula)
  49. // 获取关联指标数据
  50. for edbInfoIndex, v := range rule.EdbInfoList {
  51. dataList, tmpErr := GetPredictEdbDataListAll(v, 1)
  52. if tmpErr != nil {
  53. err = tmpErr
  54. return
  55. }
  56. //lenData := len(dataList)
  57. for _, dv := range dataList {
  58. // 现有实际数据
  59. if val, ok := realSaveDataMap[dv.DataTime]; ok {
  60. if _, ok := val[v.EdbInfoId]; !ok {
  61. val[v.EdbInfoId] = dv.Value
  62. }
  63. } else {
  64. temp := make(map[int]float64)
  65. temp[v.EdbInfoId] = dv.Value
  66. realSaveDataMap[dv.DataTime] = temp
  67. }
  68. // 待处理的数据
  69. if val, ok := saveDataMap[dv.DataTime]; ok {
  70. if _, ok := val[v.EdbInfoId]; !ok {
  71. val[v.EdbInfoId] = dv.Value
  72. }
  73. } else {
  74. temp := make(map[int]float64)
  75. temp[v.EdbInfoId] = dv.Value
  76. saveDataMap[dv.DataTime] = temp
  77. }
  78. // 以第一个指标的日期作为基准日期
  79. if edbInfoIndex == 0 {
  80. dateList = append(dateList, dv.DataTime)
  81. tmpDate, _ := time.ParseInLocation(utils.FormatDate, dv.DataTime, time.Local)
  82. if minLatestDate.IsZero() || tmpDate.After(minLatestDate) {
  83. minLatestDate = tmpDate
  84. }
  85. if maxStartDate.IsZero() || tmpDate.Before(maxStartDate) {
  86. maxStartDate = tmpDate
  87. }
  88. }
  89. }
  90. /*if lenData > 0 {
  91. tmpLatestDate, _ := time.ParseInLocation(utils.FormatDate, dataList[lenData-1].DataTime, time.Local)
  92. if minLatestDate.IsZero() || minLatestDate.After(tmpLatestDate) {
  93. minLatestDate = tmpLatestDate
  94. }
  95. tmpStartDate, _ := time.ParseInLocation(utils.FormatDate, dataList[0].DataTime, time.Local)
  96. if maxStartDate.IsZero() || maxStartDate.Before(tmpStartDate) {
  97. maxStartDate = tmpStartDate
  98. }
  99. }*/
  100. }
  101. // todo 数据处理,将日期内不全的数据做填补
  102. HandleDateSaveDataMap(dateList, maxStartDate, minLatestDate, realSaveDataMap, saveDataMap, rule.EdbInfoList, rule.EmptyType)
  103. // 添加数据
  104. addDataList := make([]*PredictEdbRuleData, 0)
  105. // 计算规则
  106. formulaDateSlice, formulaDateMap, err := utils.HandleFormulaJson(formulaStr, minLatestDate)
  107. if err != nil {
  108. return
  109. }
  110. //获取指标所有数据
  111. dataList := make([]*PredictEdbRuleData, 0)
  112. sql := `SELECT * FROM predict_edb_rule_data WHERE config_id = ?`
  113. err = to.Raw(sql, rule.ConfigId).Scan(&dataList).Error
  114. if err != nil {
  115. return
  116. }
  117. dataMap := make(map[string]*PredictEdbRuleData)
  118. removeDateMap := make(map[string]*PredictEdbRuleData) //需要移除的日期
  119. for _, v := range dataList {
  120. dataMap[v.DataTime] = v
  121. removeDateMap[v.DataTime] = v
  122. }
  123. existDataMap := make(map[string]string)
  124. // 判断是否特殊处理max和min函数
  125. maxDealFlag := false
  126. if rule.EmptyType == 4 && rule.MaxEmptyType == 2 {
  127. maxDealFlag = true
  128. }
  129. for sk, sv := range saveDataMap {
  130. // 当空值处理类型选择了不计算时,只要有一个指标在某个日期没有值(即空值),则计算指标在该日期没有值
  131. if rule.EmptyType == 1 {
  132. if len(sv) != len(rule.EdbInfoList) {
  133. continue
  134. }
  135. }
  136. //fmt.Println(sk, sv)
  137. // 根据时间范围,选择对应的公式
  138. formulaMap := make(map[string]string)
  139. formulaStr = ""
  140. for _, fv := range formulaDateSlice {
  141. if sk < fv {
  142. if f, ok := formulaDateMap[fv]; ok {
  143. formulaStr = f
  144. formulaMap, err = utils.CheckFormula(formulaStr)
  145. if err != nil {
  146. err = fmt.Errorf("公式错误,请重新填写")
  147. return
  148. }
  149. }
  150. break
  151. }
  152. }
  153. if formulaStr == "" {
  154. continue
  155. }
  156. svMax := make(map[int]float64)
  157. if maxDealFlag {
  158. // 特殊处理max和min函数,如果原本的值为空,则选择空值参与运算
  159. if svMaxData, ok := realSaveDataMap[sk]; ok {
  160. svMax = svMaxData
  161. }
  162. }
  163. formulaStr = strings.ToUpper(formulaStr)
  164. //fmt.Println(sk, sv)
  165. formulaFormStr := ReplaceFormula(rule.EdbInfoList, sv, svMax, formulaMap, formulaStr, rule.EdbInfoIdBytes, maxDealFlag)
  166. //计算公式异常,那么就移除该指标
  167. if formulaFormStr == "" {
  168. continue
  169. }
  170. //utils.FileLog.Info(fmt.Sprintf("formulaFormStr:%s", formulaFormStr))
  171. //expression := formula.NewExpression(formulaFormStr)
  172. //calResult, tmpErr := expression.Evaluate()
  173. //if tmpErr != nil {
  174. // // 分母为0的报错
  175. // if strings.Contains(tmpErr.Error(), "divide by zero") {
  176. // continue
  177. // }
  178. // err = errors.New("计算失败:Err:" + tmpErr.Error() + ";formulaStr:" + formulaFormStr)
  179. // //fmt.Println(err)
  180. // return
  181. //}
  182. //calVal, tmpErr := calResult.Float64()
  183. //if tmpErr != nil {
  184. // err = errors.New("计算失败:获取计算值失败 Err:" + tmpErr.Error() + ";formulaStr:" + formulaFormStr)
  185. // //fmt.Println(err)
  186. // return
  187. //}
  188. calVal, err := engine.ParseAndExec(formulaFormStr)
  189. //calVal, err := calResult.Float64()
  190. if err != nil {
  191. // 分母为0的报错,忽略该循环
  192. if utils.IsDivideZero(err) {
  193. //removeDateList = append(removeDateList, sk)
  194. continue
  195. }
  196. err = errors.New("计算失败:获取计算值失败 Err:" + err.Error() + ";formulaStr:" + formulaFormStr)
  197. fmt.Println(err)
  198. return nil, err
  199. }
  200. nanCheck := fmt.Sprintf("%0.f", calVal)
  201. if nanCheck == "NaN" || nanCheck == "+Inf" || nanCheck == "-Inf" {
  202. continue
  203. }
  204. // 移除不存在的日期
  205. delete(removeDateMap, sk)
  206. saveValue := decimal.NewFromFloat(calVal).Round(4).String() //utils.SubFloatToString(calVal, 4)
  207. existPredictEdbRuleData, ok := dataMap[sk]
  208. if !ok {
  209. dataTime, _ := time.ParseInLocation(utils.FormatDate, sk, time.Local)
  210. timestamp := dataTime.UnixNano() / 1e6
  211. if _, existOk := existDataMap[sk]; !existOk {
  212. tmpPredictEdbRuleData := &PredictEdbRuleData{
  213. //PredictEdbRuleDataId: 0,
  214. EdbInfoId: rule.EdbInfoId,
  215. ConfigId: rule.ConfigId,
  216. DataTime: sk,
  217. Value: saveValue,
  218. CreateTime: time.Now(),
  219. ModifyTime: time.Now(),
  220. DataTimestamp: timestamp,
  221. }
  222. addDataList = append(addDataList, tmpPredictEdbRuleData)
  223. }
  224. existDataMap[sk] = sk
  225. } else {
  226. existValDecimal, tmpErr := decimal.NewFromString(existPredictEdbRuleData.Value)
  227. if tmpErr != nil {
  228. err = tmpErr
  229. return nil, tmpErr
  230. }
  231. existStr := existValDecimal.String()
  232. if existStr != saveValue {
  233. existPredictEdbRuleData.Value = saveValue
  234. existPredictEdbRuleData.ModifyTime = time.Now()
  235. err = to.Model(existPredictEdbRuleData).Select([]string{"Value", "ModifyTime"}).Updates(existPredictEdbRuleData).Error
  236. if err != nil {
  237. return nil, err
  238. }
  239. }
  240. }
  241. // 计算出来的结果集
  242. resultDataList = append(resultDataList, &EdbInfoSearchData{
  243. //EdbDataId: 0,
  244. DataTime: sk,
  245. Value: calVal,
  246. })
  247. }
  248. // 添加计算出来的值入库
  249. lenAddDataList := len(addDataList)
  250. if lenAddDataList > 0 {
  251. err = to.CreateInBatches(addDataList, 500).Error
  252. if err != nil {
  253. return
  254. }
  255. }
  256. //删除多余的值
  257. lenRemoveDateList := len(removeDateMap)
  258. if lenRemoveDateList > 0 {
  259. removeDateList := make([]string, 0) //需要移除的日期
  260. for date, _ := range removeDateMap {
  261. removeDateList = append(removeDateList, date)
  262. }
  263. //如果拼接指标变更了,那么需要删除所有的指标数据
  264. sql := ` DELETE FROM predict_edb_rule_data WHERE config_id = ? and data_time in (` + utils.GetOrmInReplace(lenRemoveDateList) + `) `
  265. err = to.Exec(sql, rule.ConfigId, removeDateList).Error
  266. if err != nil {
  267. err = fmt.Errorf("删除计算失败的预测规则计算指标数据失败,Err:" + err.Error())
  268. return
  269. }
  270. }
  271. return
  272. }
  273. // RefreshCalculateByRuleByLineNh 刷新动态结果计算(线性拟合)
  274. func RefreshCalculateByRuleByLineNh(predictEdbInfo EdbInfo, predictEdbConfAndDataList []*PredictEdbConfAndData, rule PredictEdbConf) (err error, errMsg string) {
  275. to := global.DEFAULT_DmSQL.Begin()
  276. defer func() {
  277. if err != nil {
  278. to.Rollback()
  279. } else {
  280. to.Commit()
  281. }
  282. }()
  283. err, errMsg = CalculateByRuleByRuleLineNh(to, predictEdbInfo, predictEdbConfAndDataList, rule)
  284. return
  285. }
  286. // CalculateByRuleByRuleLineNh 一元线性拟合规则计算入库
  287. func CalculateByRuleByRuleLineNh(to *gorm.DB, predictEdbInfo EdbInfo, predictEdbConfAndDataList []*PredictEdbConfAndData, rule PredictEdbConf) (err error, errMsg string) {
  288. var secondDataList []*EdbInfoSearchData
  289. predictEdbInfoId := predictEdbInfo.EdbInfoId // 预测指标id
  290. // 规则
  291. var ruleConf RuleLineNhConf
  292. tmpErr := json.Unmarshal([]byte(rule.Value), &ruleConf)
  293. if tmpErr != nil {
  294. errMsg = `季节性配置信息异常`
  295. err = errors.New("季节性配置信息异常:" + tmpErr.Error())
  296. return
  297. }
  298. // 获取自身指标的数据
  299. {
  300. // 来源指标
  301. var sourceEdbInfoItem *EdbInfo
  302. sql := ` SELECT * FROM edb_info WHERE edb_info_id=? `
  303. err = to.Raw(sql, rule.SourceEdbInfoId).First(&sourceEdbInfoItem).Error
  304. if err != nil {
  305. return
  306. }
  307. predictEdbInfo.EdbInfoId = 0
  308. secondDataList, err, _ = GetPredictDataListByPredictEdbConfList(&predictEdbInfo, sourceEdbInfoItem, predictEdbConfAndDataList, 1, ``)
  309. if err != nil {
  310. return
  311. }
  312. }
  313. lenSecondData := len(secondDataList)
  314. if lenSecondData <= 0 {
  315. return
  316. }
  317. newNhccDataMap, err, errMsg := getCalculateNhccData(secondDataList, ruleConf)
  318. if err != nil {
  319. return
  320. }
  321. //将最后计算出来的结果数据处理(新增入库、编辑日期的值、删除日期)
  322. {
  323. // 获取需要预测的日期
  324. startDateStr := secondDataList[lenSecondData-1].DataTime
  325. startDate, _ := time.ParseInLocation(utils.FormatDate, startDateStr, time.Local)
  326. //endDate, _ := time.ParseInLocation(utils.FormatDate, ruleConf.EndDate, time.Local)
  327. endDate := rule.EndDate
  328. dayList := getPredictEdbDayList(startDate, endDate, predictEdbInfo.Frequency, predictEdbInfo.DataDateType)
  329. if len(dayList) <= 0 { // 如果未来没有日期的话,那么就退出当前循环,进入下一个循环
  330. return
  331. }
  332. //获取该配置的所有数据
  333. dataList := make([]*PredictEdbRuleData, 0)
  334. sql := `SELECT * FROM predict_edb_rule_data WHERE config_id = ?`
  335. err = to.Raw(sql, rule.ConfigId).Scan(&dataList).Error
  336. if err != nil {
  337. return
  338. }
  339. dataMap := make(map[string]*PredictEdbRuleData)
  340. for _, v := range dataList {
  341. dataMap[v.DataTime] = v
  342. }
  343. //需要移除的日期
  344. removeDateList := make([]string, 0)
  345. // 已经操作过的日期
  346. existDataMap := make(map[string]string)
  347. // 添加数据
  348. addDataList := make([]*PredictEdbRuleData, 0)
  349. for _, currentDate := range dayList {
  350. // 动态拟合残差值数据
  351. currentDateStr := currentDate.Format(utils.FormatDate)
  352. val, ok := newNhccDataMap[currentDateStr]
  353. // 找不到数据,那么就移除该日期的数据
  354. if !ok {
  355. removeDateList = append(removeDateList, currentDateStr)
  356. continue
  357. }
  358. saveValue := decimal.NewFromFloat(val).Round(4).String() //utils.SubFloatToString(calVal, 4)
  359. existPredictEdbRuleData, ok := dataMap[currentDateStr]
  360. if !ok {
  361. timestamp := currentDate.UnixNano() / 1e6
  362. if _, existOk := existDataMap[currentDateStr]; !existOk {
  363. tmpPredictEdbRuleData := &PredictEdbRuleData{
  364. //PredictEdbRuleDataId: 0,
  365. EdbInfoId: predictEdbInfoId,
  366. ConfigId: rule.ConfigId,
  367. DataTime: currentDateStr,
  368. Value: saveValue,
  369. CreateTime: time.Now(),
  370. ModifyTime: time.Now(),
  371. DataTimestamp: timestamp,
  372. }
  373. addDataList = append(addDataList, tmpPredictEdbRuleData)
  374. }
  375. existDataMap[currentDateStr] = currentDateStr
  376. } else {
  377. existValDecimal, tmpErr := decimal.NewFromString(existPredictEdbRuleData.Value)
  378. if tmpErr != nil {
  379. err = tmpErr
  380. return
  381. }
  382. existStr := existValDecimal.String()
  383. if existStr != saveValue {
  384. existPredictEdbRuleData.Value = saveValue
  385. existPredictEdbRuleData.ModifyTime = time.Now()
  386. err = to.Model(existPredictEdbRuleData).Select([]string{"Value", "ModifyTime"}).Updates(existPredictEdbRuleData).Error
  387. if err != nil {
  388. return
  389. }
  390. }
  391. }
  392. }
  393. // 添加计算出来的值入库
  394. lenAddDataList := len(addDataList)
  395. if lenAddDataList > 0 {
  396. err = to.CreateInBatches(addDataList, 500).Error
  397. if err != nil {
  398. return
  399. }
  400. }
  401. //删除多余的值
  402. lenRemoveDateList := len(removeDateList)
  403. if lenRemoveDateList > 0 {
  404. //如果拼接指标变更了,那么需要删除所有的指标数据
  405. sql := ` DELETE FROM predict_edb_rule_data WHERE config_id = ? and data_time in (` + utils.GetOrmInReplace(lenRemoveDateList) + `) `
  406. err = to.Exec(sql, rule.ConfigId, removeDateList).Error
  407. if err != nil {
  408. err = fmt.Errorf("删除计算失败的预测规则计算指标数据失败,Err:" + err.Error())
  409. return
  410. }
  411. }
  412. }
  413. return
  414. }