base_from_python.go 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138
  1. package services
  2. import (
  3. "encoding/json"
  4. "fmt"
  5. "hongze/hongze_edb_lib/utils"
  6. "os"
  7. "os/exec"
  8. "strings"
  9. )
  10. func Test() (err error) {
  11. defer func() {
  12. if err != nil {
  13. fmt.Println("err:", err)
  14. }
  15. }()
  16. ///usr/local/bin/python3.9
  17. //exec.Command("bin/bash", "-c")
  18. //cmd := exec.Command("/usr/local/bin/python3.9", "-c", "/Users/roc/go/src/hongze/hongze_edb_lib/test2.py")
  19. //cmd := exec.Command("python3", "-c", "./test2.py")
  20. cmd := exec.Command("python3", "/Users/roc/go/src/hongze/hongze_edb_lib/test2.py")
  21. outputByte, err := cmd.Output()
  22. //fmt.Println(err)
  23. fmt.Println("start")
  24. if err != nil {
  25. return
  26. }
  27. fmt.Println(string(outputByte))
  28. arr := strings.Split(string(outputByte), "result=")
  29. arrLen := len(arr)
  30. //fmt.Println(arr)
  31. if arrLen <= 1 {
  32. err = fmt.Errorf("python运算结果异常")
  33. return
  34. }
  35. resultStr := arr[arrLen-1]
  36. fmt.Println(resultStr)
  37. var dataMap map[string]float64
  38. json.Unmarshal([]byte(resultStr), &dataMap)
  39. fmt.Println(dataMap)
  40. //i, err := python3.Py_Main(os.Args)
  41. //if err != nil {
  42. // fmt.Printf("error launching the python interpreter: %s\n", err)
  43. // os.Exit(1)
  44. //}
  45. ////commStr := "#!/usr/bin/python\n# -*- coding: UTF-8 -*-\n\nimport pymysql\nimport pandas as pd\nfrom test_bak import sql_config\n\ndb = pymysql.connect(**sql_config)\ndb.autocommit(1)\ncursor = db.cursor()\npandas_fetch_all = pd.read_sql\n\n# 返回数据\nresult = {}\n\n# 格式化返回数据\ndef format_data(data: pd.DataFrame,\n index_str: str = \"data_time\",\n value_str: str = \"value\"\n ) -> dict:\n \"\"\"\n Parameters\n ----------\n data : pandas的DataFrame数据结构.\n index_str : 对象下标字符串,在pandas的DataFrame中的列名.\n value_str : 对象值字符串,在pandas的DataFrame中的列名\n\n Returns\n -------\n DataFrame or Iterator[DataFrame]\n 例子:{'2007-01-09': 3220.0, '2007-01-10': 3230.0}\n\n \"\"\"\n tmp_result = {}\n for num in range(1, data.index.size): # 迭代 所有的指标\n tmp_result[data[index_str][num]] = data[value_str][num]\n return tmp_result\n\n\ndef query():\n edb_code = 's0033227'\n data_time = '2002-03-17'\n # field_name = '平均温度'\n sql1 = f\"\"\"SELECT data_time,`value` FROM edb_data_wind WHERE edb_code = '{edb_code}' and data_time > '{data_time}' ;\"\"\"\n raw = pandas_fetch_all(sql1, db)\n raw['data_time_str'] = raw['data_time'].apply(lambda x: x.strftime(\"%Y-%m-%d\"))\n format_result = format_data(raw, \"data_time_str\", \"value\")\n print(format_result)\n return format_result\n\n\nresult = query()\ndb.close()\n"
  46. ////i := python3.PyRun_SimpleString(commStr)
  47. //fmt.Println(i)
  48. return
  49. }
  50. // EdbDataFromPython 通过python代码获取到的指标数据
  51. type EdbDataFromPython struct {
  52. Date map[int]string `json:"date"`
  53. Value map[int]float64 `json:"value"`
  54. }
  55. // ExecPythonCode 执行Python代码
  56. func ExecPythonCode(edbCode, reqCode string) (dataMap EdbDataFromPython, err error) {
  57. defer func() {
  58. if err != nil {
  59. fmt.Println("err:", err)
  60. }
  61. }()
  62. //获取python文件的绝对地址
  63. pythonFile, err := getPythonFileAbsolutePath(edbCode)
  64. if err != nil {
  65. return
  66. }
  67. pthonCodeStr := getPythonFrontStr() + reqCode + getPythonLaterStr()
  68. fileHandle, err := os.OpenFile(pythonFile, os.O_RDWR|os.O_CREATE|os.O_EXCL, 0766)
  69. if err != nil {
  70. return
  71. }
  72. //defer func() {
  73. // os.Remove(pythonFile)
  74. //}()
  75. _, err = fileHandle.Write([]byte(pthonCodeStr))
  76. if err != nil {
  77. return
  78. }
  79. fileHandle.Close()
  80. cmd := exec.Command("python3", pythonFile)
  81. outputByte, err := cmd.Output()
  82. //fmt.Println(err)
  83. if err != nil {
  84. return
  85. }
  86. //fmt.Println(string(outputByte))
  87. arr := strings.Split(string(outputByte), "result=")
  88. arrLen := len(arr)
  89. //fmt.Println(arr)
  90. if arrLen <= 1 {
  91. err = fmt.Errorf("python运算结果异常")
  92. return
  93. }
  94. resultStr := arr[arrLen-1]
  95. fmt.Println(resultStr)
  96. json.Unmarshal([]byte(resultStr), &dataMap)
  97. //fmt.Println(dataMap)
  98. return
  99. }
  100. // getPythonFileAbsolutePath 获取python文件的绝对地址
  101. func getPythonFileAbsolutePath(edbCode string) (pythonFile string, err error) {
  102. uploadDir := utils.STATIC_DIR + "python/"
  103. err = os.MkdirAll(uploadDir, 0766)
  104. if err != nil {
  105. return
  106. }
  107. pythonFile = uploadDir + fmt.Sprint(edbCode, "_", utils.GetRandDigit(16), ".py")
  108. if utils.RunMode != "release" {
  109. dir, tmpErr := os.Getwd()
  110. if tmpErr != nil {
  111. err = tmpErr
  112. return
  113. }
  114. pythonFile = dir + "/" + pythonFile
  115. }
  116. return
  117. }
  118. // getPythonFrontStr 获取python前面的代码
  119. func getPythonFrontStr() string {
  120. //return "#!/usr/bin/python\n# -*- coding: UTF-8 -*-\nimport json\n\nimport pymysql\nimport pandas as pd\n\nsql_config = {\n 'host': 'rm-uf67kg347rhjfep5c1o.mysql.rds.aliyuncs.com',\n 'port': 3306,#主机号\n 'user': 'hz_technology',#账户名\n 'passwd': 'hongze@2021',#密码\n 'db': 'test_hz_data',\n 'charset': 'utf8mb4',\n 'cursorclass': pymysql.cursors.DictCursor\n}\n\ndb = pymysql.connect(**sql_config)\ndb.autocommit(1)\ncursor = db.cursor()\npandas_fetch_all = pd.read_sql\n\n# 返回数据\nresult = {}\n\n# 格式化返回数据\ndef format_data(data: pd.DataFrame,\n index_str: str = \"data_time\",\n value_str: str = \"value\"\n ) -> pd.DataFrame:\n \"\"\"\n Parameters\n ----------\n data : pandas的DataFrame数据结构.\n index_str : 对象下标字符串,在pandas的DataFrame中的列名.\n value_str : 对象值字符串,在pandas的DataFrame中的列名\n\n Returns\n -------\n DataFrame or Iterator[DataFrame]\n 例子:{'2007-01-09': 3220.0, '2007-01-10': 3230.0}\n\n \"\"\"\n index_list = [] # 空列表\n value_list = [] # 空列表\n\n for num in range(1, data.index.size): # 迭代 所有的指标\n index_list.append(data[index_str][num])\n value_list.append(data[value_str][num])\n\n tmp_data = {\n \"date\": index_list,\n \"value\": value_list\n }\n pd_data = pd.DataFrame(tmp_data)\n # print(pd_data)\n return pd_data\n"
  121. str := fmt.Sprintf("#!/usr/bin/python\n# -*- coding: UTF-8 -*-\nimport json\n\nimport pymysql\nimport pandas as pd\n\nsql_config = {\n 'host': '%s',\n 'port': 3306,#主机号\n 'user': '%s',#账户名\n 'passwd': '%s',#密码\n 'db': '%s',\n 'charset': 'utf8mb4',\n 'cursorclass': pymysql.cursors.DictCursor\n}\n\ndb = pymysql.connect(**sql_config)\ndb.autocommit(1)\ncursor = db.cursor()\npandas_fetch_all = pd.read_sql\n\n# 返回数据\nresult = {}\n\n# 格式化返回数据\ndef format_data(data: pd.DataFrame,\n index_str: str = \"data_time\",\n value_str: str = \"value\"\n ) -> pd.DataFrame:\n \"\"\"\n Parameters\n ----------\n data : pandas的DataFrame数据结构.\n index_str : 对象下标字符串,在pandas的DataFrame中的列名.\n value_str : 对象值字符串,在pandas的DataFrame中的列名\n\n Returns\n -------\n DataFrame or Iterator[DataFrame]\n 例子:{'2007-01-09': 3220.0, '2007-01-10': 3230.0}\n\n \"\"\"\n index_list = [] # 空列表\n value_list = [] # 空列表\n\n for num in range(1, data.index.size): # 迭代 所有的指标\n index_list.append(data[index_str][num])\n value_list.append(data[value_str][num])\n\n tmp_data = {\n \"date\": index_list,\n \"value\": value_list\n }\n pd_data = pd.DataFrame(tmp_data)\n # print(pd_data)\n return pd_data\n", utils.PYTHON_MYSQL_HOST, utils.PYTHON_MYSQL_USER, utils.PYTHON_MYSQL_PASSWD, utils.PYTHON_MYSQL_DB)
  122. return str
  123. }
  124. // getPythonFrontStr 获取python结尾的代码
  125. func getPythonLaterStr() string {
  126. return "\nprint(\"result=\",result.to_json())\ndb.close()"
  127. }