predict_edb_data_calculate_ljztbpj.go 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594
  1. package models
  2. import (
  3. "errors"
  4. "eta_gn/eta_index_lib/global"
  5. "eta_gn/eta_index_lib/utils"
  6. "fmt"
  7. "github.com/shopspring/decimal"
  8. "gorm.io/gorm"
  9. "sort"
  10. "strings"
  11. "time"
  12. )
  13. // EdbDataPredictCalculateLjztbpj 累计值同比拼接数据结构体
  14. type EdbDataPredictCalculateLjztbpj struct {
  15. EdbDataId int `gorm:"primaryKey;autoIncrement;column:edb_data_id"`
  16. EdbInfoId int `gorm:"column:edb_info_id" description:"指标ID"`
  17. EdbCode string `gorm:"column:edb_code" description:"指标编码"`
  18. DataTime string `gorm:"column:data_time" description:"数据日期"`
  19. Value float64 `gorm:"column:value" description:"数据值"`
  20. Status int `gorm:"column:status" description:"状态"`
  21. CreateTime time.Time `gorm:"column:status" description:"创建时间"`
  22. ModifyTime time.Time `gorm:"column:create_time" description:"修改时间"`
  23. DataTimestamp int64 `gorm:"column:modify_time" description:"数据日期时间戳"`
  24. }
  25. // SavePredictCalculateLjztbpj 新增累计值同比拼接数据
  26. func SavePredictCalculateLjztbpj(req *EdbInfoCalculateBatchSaveReq, firstEdbInfo, secondEdbInfo *EdbInfo, edbCode, uniqueCode string, sysUserId int, sysUserRealName string) (edbInfo *EdbInfo, latestDateStr string, latestValue float64, err error) {
  27. to := global.DEFAULT_DmSQL.Begin()
  28. defer func() {
  29. if err != nil {
  30. to.Rollback()
  31. } else {
  32. to.Commit()
  33. }
  34. }()
  35. //最近开始的时间
  36. var lastDateTime time.Time
  37. var existItemA, existItemB *EdbInfoCalculateMapping
  38. //获取待拼接指标
  39. {
  40. /*var condition string
  41. var pars []interface{}
  42. //获取待拼接指标最近的个12月31日有值的年份
  43. condition += " AND data_time like ? AND edb_info_id=? "
  44. pars = append(pars, "%12-31", firstEdbInfo.EdbInfoId)
  45. lastEdbData, tmpErr := GetLastEdbData(condition, pars, firstEdbInfo.Source)
  46. if tmpErr != nil {
  47. err = tmpErr
  48. return
  49. }*/
  50. var firstDataList []*EdbInfoSearchData
  51. var lastEdbData *EdbInfoSearchData
  52. firstDataList, err = GetPredictEdbDataListAllByStartDate(firstEdbInfo, 0, "")
  53. if err != nil {
  54. return
  55. }
  56. for _, v := range firstDataList {
  57. if strings.Contains(v.DataTime, "-12-31") {
  58. lastEdbData = v
  59. }
  60. }
  61. if lastEdbData == nil {
  62. err = errors.New("找不到最近的12月31号")
  63. return
  64. }
  65. lastDateTime, _ = time.ParseInLocation(utils.FormatDate, lastEdbData.DataTime, time.Local)
  66. }
  67. if req.EdbInfoId <= 0 {
  68. edbInfo = &EdbInfo{
  69. EdbInfoType: 1,
  70. SourceName: "预测累计值同比拼接",
  71. Source: utils.DATA_SOURCE_PREDICT_CALCULATE_LJZTBPJ,
  72. EdbCode: edbCode,
  73. EdbName: req.EdbName,
  74. EdbNameSource: req.EdbName,
  75. Frequency: req.Frequency,
  76. Unit: req.Unit,
  77. StartDate: firstEdbInfo.StartDate,
  78. EndDate: firstEdbInfo.EndDate,
  79. ClassifyId: req.ClassifyId,
  80. SysUserId: sysUserId,
  81. SysUserRealName: sysUserRealName,
  82. UniqueCode: uniqueCode,
  83. CreateTime: time.Now(),
  84. ModifyTime: time.Now(),
  85. CalculateFormula: lastDateTime.Format(utils.FormatDate),
  86. EdbType: 2,
  87. }
  88. tmpErr := to.Create(edbInfo).Error
  89. if tmpErr != nil {
  90. err = tmpErr
  91. return
  92. }
  93. //关联关系
  94. {
  95. existItemA = &EdbInfoCalculateMapping{
  96. EdbInfoCalculateMappingId: 0,
  97. EdbInfoId: edbInfo.EdbInfoId,
  98. Source: edbInfo.Source,
  99. SourceName: edbInfo.SourceName,
  100. EdbCode: edbInfo.EdbCode,
  101. FromEdbInfoId: firstEdbInfo.EdbInfoId,
  102. FromEdbCode: firstEdbInfo.EdbCode,
  103. FromEdbName: firstEdbInfo.EdbName,
  104. FromSource: firstEdbInfo.Source,
  105. FromSourceName: firstEdbInfo.SourceName,
  106. FromTag: "A",
  107. Sort: 1,
  108. CreateTime: time.Now(),
  109. ModifyTime: time.Now(),
  110. }
  111. tmpErr := to.Create(existItemA).Error
  112. if tmpErr != nil {
  113. err = tmpErr
  114. return
  115. }
  116. }
  117. //同比值指标
  118. {
  119. existItemB = &EdbInfoCalculateMapping{
  120. EdbInfoCalculateMappingId: 0,
  121. EdbInfoId: edbInfo.EdbInfoId,
  122. Source: edbInfo.Source,
  123. SourceName: edbInfo.SourceName,
  124. EdbCode: edbInfo.EdbCode,
  125. FromEdbInfoId: secondEdbInfo.EdbInfoId,
  126. FromEdbCode: secondEdbInfo.EdbCode,
  127. FromEdbName: secondEdbInfo.EdbName,
  128. FromSource: secondEdbInfo.Source,
  129. FromSourceName: secondEdbInfo.SourceName,
  130. FromTag: "B",
  131. Sort: 1,
  132. CreateTime: time.Now(),
  133. ModifyTime: time.Now(),
  134. }
  135. tmpErr := to.Create(existItemB).Error
  136. if tmpErr != nil {
  137. err = tmpErr
  138. return
  139. }
  140. }
  141. } else {
  142. edbInfo, err = GetEdbInfoById(req.EdbInfoId)
  143. if err != nil {
  144. return
  145. }
  146. latestDateStr = edbInfo.LatestDate
  147. latestValue = edbInfo.LatestValue
  148. nowEdbInfo := *edbInfo // 现在的指标信息
  149. sql := ``
  150. //修改指标信息
  151. edbInfo.EdbNameSource = req.EdbName
  152. edbInfo.Frequency = req.Frequency
  153. edbInfo.Unit = req.Unit
  154. edbInfo.ClassifyId = req.ClassifyId
  155. edbInfo.CalculateFormula = lastDateTime.Format(utils.FormatDate)
  156. edbInfo.ModifyTime = time.Now()
  157. err = to.Model(edbInfo).Select([]string{"EdbName", "EdbNameSource", "Frequency", "Unit", "ClassifyId", "CalculateFormula", "ModifyTime"}).Updates(edbInfo).Error
  158. if err != nil {
  159. return
  160. }
  161. //查询出所有的关联指标
  162. var existCondition string
  163. var existPars []interface{}
  164. existCondition += " AND edb_info_id=? "
  165. existPars = append(existPars, edbInfo.EdbInfoId)
  166. var existList []*EdbInfoCalculateMapping
  167. existList, err = GetEdbInfoCalculateListByCondition(existCondition, existPars)
  168. if err != nil {
  169. err = errors.New("判断指标是否改变失败,Err:" + err.Error())
  170. return
  171. }
  172. for _, existItem := range existList {
  173. if existItem.FromTag == "A" {
  174. existItemA = existItem
  175. } else if existItem.FromTag == "B" {
  176. existItemB = existItem
  177. }
  178. }
  179. if existItemA == nil {
  180. err = errors.New("原待拼接指标不存在")
  181. return
  182. }
  183. if existItemB == nil {
  184. err = errors.New("原同比值指标不存在")
  185. return
  186. }
  187. // 是否需要删除数据重新计算
  188. isNeedCalculateData := false
  189. // 如果截止日期变更,那么需要重新计算
  190. if lastDateTime.Format(utils.FormatDate) != nowEdbInfo.CalculateFormula {
  191. isNeedCalculateData = true
  192. }
  193. //待拼接指标数据
  194. //如果拼接指标变更了,那么需要删除所有的指标进行重新拼接
  195. if existItemA.FromEdbInfoId != firstEdbInfo.EdbInfoId {
  196. //删除之前的A指标关联关系
  197. sql = ` DELETE FROM edb_info_calculate_mapping WHERE edb_info_id = ? and from_edb_info_id = ?`
  198. err = to.Exec(sql, edbInfo.EdbInfoId, existItemA.FromEdbInfoId).Error
  199. if err != nil {
  200. err = errors.New("删除拼接日期之前的指标关联关系失败,Err:" + err.Error())
  201. return
  202. }
  203. }
  204. //同比值指标
  205. if existItemB.FromEdbInfoId != secondEdbInfo.EdbInfoId {
  206. //删除之前的B指标关联关系
  207. sql = ` DELETE FROM edb_info_calculate_mapping WHERE edb_info_id = ? and from_edb_info_id = ?`
  208. err = to.Exec(sql, edbInfo.EdbInfoId, existItemB.FromEdbInfoId).Error
  209. if err != nil {
  210. err = errors.New("删除拼接日期之后的指标关联关系失败,Err:" + err.Error())
  211. return
  212. }
  213. }
  214. //添加新的指标关系
  215. if existItemA.FromEdbInfoId != firstEdbInfo.EdbInfoId {
  216. existItemA = &EdbInfoCalculateMapping{
  217. EdbInfoCalculateMappingId: 0,
  218. EdbInfoId: edbInfo.EdbInfoId,
  219. Source: edbInfo.Source,
  220. SourceName: edbInfo.SourceName,
  221. EdbCode: edbInfo.EdbCode,
  222. FromEdbInfoId: firstEdbInfo.EdbInfoId,
  223. FromEdbCode: firstEdbInfo.EdbCode,
  224. FromEdbName: firstEdbInfo.EdbName,
  225. FromSource: firstEdbInfo.Source,
  226. FromSourceName: firstEdbInfo.SourceName,
  227. FromTag: "A",
  228. Sort: 1,
  229. CreateTime: time.Now(),
  230. ModifyTime: time.Now(),
  231. }
  232. tmpErr := to.Create(existItemA).Error
  233. if tmpErr != nil {
  234. err = tmpErr
  235. return
  236. }
  237. isNeedCalculateData = true
  238. }
  239. //添加新的指标关系
  240. if existItemB.FromEdbInfoId != secondEdbInfo.EdbInfoId {
  241. existItemB = &EdbInfoCalculateMapping{
  242. EdbInfoCalculateMappingId: 0,
  243. EdbInfoId: edbInfo.EdbInfoId,
  244. Source: edbInfo.Source,
  245. SourceName: edbInfo.SourceName,
  246. EdbCode: edbInfo.EdbCode,
  247. FromEdbInfoId: secondEdbInfo.EdbInfoId,
  248. FromEdbCode: secondEdbInfo.EdbCode,
  249. FromEdbName: secondEdbInfo.EdbName,
  250. FromSource: secondEdbInfo.Source,
  251. FromSourceName: secondEdbInfo.SourceName,
  252. FromTag: "B",
  253. Sort: 2,
  254. CreateTime: time.Now(),
  255. ModifyTime: time.Now(),
  256. }
  257. tmpErr := to.Create(existItemB).Error
  258. if tmpErr != nil {
  259. err = tmpErr
  260. return
  261. }
  262. isNeedCalculateData = true
  263. }
  264. // 如果需要重新计算,那么先删除所有的指标数据,然后再重新计算
  265. if isNeedCalculateData {
  266. // 删除之前所有的指标数据
  267. tableName := GetEdbDataTableName(edbInfo.Source, edbInfo.SubSource)
  268. sql = fmt.Sprintf(` DELETE FROM %s WHERE edb_info_id = ? `, tableName)
  269. err = to.Exec(sql, edbInfo.EdbInfoId).Error
  270. if err != nil {
  271. err = errors.New("删除所有的累计值同比拼接指标数据失败,Err:" + err.Error())
  272. return
  273. }
  274. } else {
  275. return
  276. }
  277. }
  278. // 添加数据
  279. latestDateStr, latestValue, err = refreshAllPredictCalculateLjztbpj(to, edbInfo, firstEdbInfo, secondEdbInfo, existItemB)
  280. return
  281. }
  282. // RefreshAllPredictCalculateLjztbpj 刷新所有 累计值同比拼接 数据
  283. func RefreshAllPredictCalculateLjztbpj(edbInfo *EdbInfo) (latestDateStr string, latestValue float64, err error) {
  284. to := global.DEFAULT_DmSQL.Begin()
  285. defer func() {
  286. if err != nil {
  287. to.Rollback()
  288. } else {
  289. to.Commit()
  290. }
  291. }()
  292. //查询关联指标信息
  293. var existCondition string
  294. var existPars []interface{}
  295. existCondition += " AND edb_info_id=? "
  296. existPars = append(existPars, edbInfo.EdbInfoId)
  297. existList, err := GetEdbInfoCalculateListByCondition(existCondition, existPars)
  298. if err != nil {
  299. err = errors.New("判断指标是否改变失败,Err:" + err.Error())
  300. return
  301. }
  302. var existItemA, existItemB *EdbInfoCalculateMapping
  303. for _, existItem := range existList {
  304. if existItem.FromTag == "A" {
  305. existItemA = existItem
  306. } else if existItem.FromTag == "B" {
  307. existItemB = existItem
  308. }
  309. }
  310. if existItemA == nil {
  311. err = errors.New("原待拼接指标不存在")
  312. return
  313. }
  314. if existItemB == nil {
  315. err = errors.New("原同比值指标不存在")
  316. return
  317. }
  318. fromEdbInfo, err := GetEdbInfoById(existItemA.FromEdbInfoId)
  319. if err != nil {
  320. err = fmt.Errorf("GetEdbInfoById Err:" + err.Error())
  321. return
  322. }
  323. secondEdbInfo, err := GetEdbInfoById(existItemB.FromEdbInfoId)
  324. if err != nil {
  325. err = fmt.Errorf("GetEdbInfoById Err:" + err.Error())
  326. return
  327. }
  328. // 刷新数据
  329. latestDateStr, latestValue, err = refreshAllPredictCalculateLjztbpj(to, edbInfo, fromEdbInfo, secondEdbInfo, existItemB)
  330. return
  331. }
  332. // refreshAllPredictCalculateLjztbpj 刷新所有 累计值同比拼接 数据
  333. func refreshAllPredictCalculateLjztbpj(to *gorm.DB, edbInfo, firstEdbInfo, secondEdbInfo *EdbInfo, existItemB *EdbInfoCalculateMapping) (latestDateStr string, latestValue float64, err error) {
  334. //根据指标id获取全部的数据
  335. var dataList []*EdbDataPredictCalculateLjztbpj
  336. sql := ` SELECT * FROM edb_data_predict_calculate_ljztbpj WHERE edb_info_id=? ORDER BY data_time DESC `
  337. err = to.Raw(sql, edbInfo.EdbInfoId).Scan(&dataList).Error
  338. if err != nil {
  339. return
  340. }
  341. latestDateStr = secondEdbInfo.LatestDate
  342. //待拼接指标map
  343. pjDataMap := make(map[string]float64) //需要入库的数据
  344. nowEdbDataMap := make(map[string]float64) //当前指标的数据(已经在库里了,不需要重新)
  345. //拼接指标的日期切片数据
  346. pjEdbDataTimeList := make([]string, 0)
  347. dataMap := make(map[string]*EdbDataPredictCalculateLjztbpj)
  348. for _, v := range dataList {
  349. pjEdbDataTimeList = append(pjEdbDataTimeList, v.DataTime)
  350. dataMap[v.DataTime] = v
  351. nowEdbDataMap[v.DataTime] = v.Value
  352. }
  353. // 原数据开始计算日期
  354. startCalculationDate, _ := time.ParseInLocation(utils.FormatDate, edbInfo.CalculateFormula, time.Local)
  355. //待拼接指标
  356. {
  357. /*var condition string
  358. var pars []interface{}
  359. condition += " AND data_time <= ? AND edb_info_id=? "
  360. pars = append(pars, startCalculationDate, existItemA.FromEdbInfoId)
  361. //第一个指标的数据列表
  362. firstDataList, tmpErr := GetEdbDataListAllByTo(to, condition, pars, existItemA.FromSource, 0)
  363. if tmpErr != nil {
  364. err = tmpErr
  365. return
  366. }*/
  367. var firstDataList []*EdbInfoSearchData
  368. firstDataList, err = GetPredictEdbDataListAllByStartDate(firstEdbInfo, 0, "")
  369. if err != nil {
  370. return
  371. }
  372. for _, v := range firstDataList {
  373. if v.DataTime > startCalculationDate.Format(utils.FormatDate) {
  374. continue
  375. }
  376. //时间戳
  377. if edbData, ok := dataMap[v.DataTime]; ok {
  378. if edbData.Value != v.Value {
  379. //更新指标数据
  380. edbData.Value = v.Value
  381. //_, _ = to.Update(edbData, "Value")
  382. _ = to.Model(edbData).Select([]string{"Value"}).Updates(edbData).Error
  383. }
  384. } else {
  385. pjDataMap[v.DataTime] = v.Value
  386. pjEdbDataTimeList = append(pjEdbDataTimeList, v.DataTime)
  387. }
  388. //将新的数据存入已入库指标map里面,以便后续计算
  389. nowEdbDataMap[v.DataTime] = v.Value
  390. }
  391. }
  392. //同比值指标map
  393. tbzEdbDataMap := make(map[string]float64)
  394. //同比值日期切片列表
  395. tbzEdbDataTimeList := make([]string, 0)
  396. //同比值指标
  397. {
  398. //第二个指标的数据列表
  399. secondDataList, tmpErr := GetEdbDataListAllByTo(to, existItemB.FromSource, existItemB.FromSubSource, FindEdbDataListAllCond{
  400. EdbInfoId: existItemB.FromEdbInfoId,
  401. StartDataTime: startCalculationDate.Format(utils.FormatDate),
  402. StartDataTimeCond: ">",
  403. }, 0)
  404. if tmpErr != nil {
  405. err = tmpErr
  406. return
  407. }
  408. for _, v := range secondDataList {
  409. tbzEdbDataMap[v.DataTime] = v.Value
  410. tbzEdbDataTimeList = append(tbzEdbDataTimeList, v.DataTime)
  411. }
  412. }
  413. sort.Strings(tbzEdbDataTimeList)
  414. // 遍历现有的数据,判断拼接指标中是否存在该日期数据,如果拼接指标无此数据,那么需要删除该日期数据(日期的判断:需要在开始计算日期之后)
  415. removeDateList := make([]string, 0)
  416. for nowEdbDate := range nowEdbDataMap {
  417. nowEdbDateTime, _ := time.ParseInLocation(utils.FormatDate, nowEdbDate, time.Local)
  418. //校验日期 需要 大于 拼接前日期
  419. if startCalculationDate.Before(nowEdbDateTime) {
  420. if _, ok := tbzEdbDataMap[nowEdbDate]; !ok {
  421. // 同比指标中,不存在该日期数据,那么需要移除 现有数据 中该日期的数据
  422. removeDateList = append(removeDateList, nowEdbDate)
  423. }
  424. }
  425. }
  426. //待修改的指标数据map(index:日期,value:值)
  427. updateEdbDataMap := make(map[string]float64)
  428. for _, v := range tbzEdbDataTimeList {
  429. tbzDataTime, _ := time.ParseInLocation(utils.FormatDate, v, time.Local)
  430. //获取拼接指标上一年同一天的数据
  431. var pjDataTime time.Time
  432. if tbzDataTime.Month() == 2 {
  433. pjDataTime = tbzDataTime.AddDate(0, -11, 0)
  434. pjDataTime = time.Date(pjDataTime.Year(), pjDataTime.Month(), 1, 0, 0, 0, 0, time.Now().Location()).AddDate(0, 0, -1)
  435. } else {
  436. pjDataTime = tbzDataTime.AddDate(-1, 0, 0)
  437. }
  438. //校验现有数据中,是否存在该日期的数据,如果存在的话,那么就要去校验 最新计算数据 与 现有数据 是否一致
  439. if nowEdbDataValue, isHas := nowEdbDataMap[v]; isHas {
  440. //获取去年今日的数据,获取到后,然后是去修改该日期的数据
  441. if lastYearEdbDataValue, ok := nowEdbDataMap[pjDataTime.Format(utils.FormatDate)]; ok {
  442. tbzDataValue := tbzEdbDataMap[v] //同比值
  443. currValue := lastYearEdbDataValue * (1 + tbzDataValue/100)
  444. currValue, _ = decimal.NewFromFloat(currValue).Truncate(4).Float64() //保留4位小数
  445. //如果计算出来的值与库里面的值不匹配,那么就去修改该值
  446. if nowEdbDataValue != currValue {
  447. //将计算后的数据存入待拼接指标map里面,以便后续计算
  448. updateEdbDataMap[v] = currValue
  449. }
  450. }
  451. } else {
  452. //因为 现有数据中 不存在该日期数据,那么需要做新增数据处理
  453. //如果去年今日存在该数据,那么就去计算当前的数据
  454. if pjDataValue, ok := nowEdbDataMap[pjDataTime.Format(utils.FormatDate)]; ok {
  455. tbzDataValue := tbzEdbDataMap[v] //同比值
  456. currValue := pjDataValue * (1 + tbzDataValue/100)
  457. currValue, _ = decimal.NewFromFloat(currValue).Truncate(4).Float64()
  458. //将计算后的数据存入已入库指标map里面,以便后续计算
  459. nowEdbDataMap[v] = currValue
  460. //将计算后的数据存入待拼接指标map里面,以便后续入库
  461. pjDataMap[v] = currValue
  462. pjEdbDataTimeList = append(pjEdbDataTimeList, v)
  463. }
  464. }
  465. }
  466. //新增的数据入库
  467. {
  468. addDataList := make([]*EdbDataPredictCalculateLjztbpj, 0)
  469. //日期排序下
  470. sort.Strings(pjEdbDataTimeList)
  471. //这么做的目的是为了让数据插入的时候,可以正序插入(业务上没啥卵用,就是为了让我看数据的时候舒服点,手动狗头-_-|)
  472. for _, dataTime := range pjEdbDataTimeList {
  473. if dataValue, ok := pjDataMap[dataTime]; ok {
  474. //时间戳
  475. currentDate, _ := time.ParseInLocation(utils.FormatDate, dataTime, time.Local)
  476. timestamp := currentDate.UnixNano() / 1e6
  477. edbDataLjztbpj := &EdbDataPredictCalculateLjztbpj{
  478. EdbInfoId: edbInfo.EdbInfoId,
  479. EdbCode: edbInfo.EdbCode,
  480. DataTime: dataTime,
  481. Value: dataValue,
  482. Status: 1,
  483. CreateTime: time.Now(),
  484. ModifyTime: time.Now(),
  485. DataTimestamp: timestamp,
  486. }
  487. addDataList = append(addDataList, edbDataLjztbpj)
  488. }
  489. }
  490. //数据入库
  491. if len(addDataList) > 0 {
  492. tmpErr := to.CreateInBatches(addDataList, 500).Error
  493. if tmpErr != nil {
  494. err = tmpErr
  495. return
  496. }
  497. }
  498. }
  499. //删除已经不存在的累计同比拼接指标数据(由于同比值当日的数据删除了)
  500. {
  501. if len(removeDateList) > 0 {
  502. removeDateStr := strings.Join(removeDateList, `","`)
  503. removeDateStr = `"` + removeDateStr + `"`
  504. //如果拼接指标变更了,那么需要删除所有的指标数据
  505. tableName := GetEdbDataTableName(edbInfo.Source, edbInfo.SubSource)
  506. sql := fmt.Sprintf(` DELETE FROM %s WHERE edb_info_id = ? and data_time in (%s) `, tableName, removeDateStr)
  507. err = to.Exec(sql, edbInfo.EdbInfoId).Error
  508. if err != nil {
  509. err = errors.New("删除不存在的累计值同比拼接指标数据失败,Err:" + err.Error())
  510. return
  511. }
  512. }
  513. }
  514. //修改现有的数据中对应的值
  515. {
  516. tableName := GetEdbDataTableName(edbInfo.Source, edbInfo.SubSource)
  517. for edbDate, edbDataValue := range updateEdbDataMap {
  518. sql := fmt.Sprintf(` UPDATE %s set value = ?,modify_time=now() WHERE edb_info_id = ? and data_time = ? `, tableName)
  519. err = to.Exec(sql, edbDataValue, edbInfo.EdbInfoId, edbDate).Error
  520. if err != nil {
  521. err = errors.New("更新现有的累计值同比拼接指标数据失败,Err:" + err.Error())
  522. return
  523. }
  524. }
  525. }
  526. //确定最终值
  527. var finalLast EdbInfoSearchData
  528. sql = ` SELECT data_time , value FROM edb_data_predict_calculate_ljztbpj WHERE edb_info_id=? and data_time<=? ORDER BY data_time DESC `
  529. tmpErr := to.Raw(sql, edbInfo.EdbInfoId, latestDateStr).First(&finalLast).Error
  530. if tmpErr != nil {
  531. if tmpErr.Error() != utils.ErrNoRow() {
  532. err = tmpErr
  533. }
  534. return
  535. } else {
  536. latestDateStr = finalLast.DataTime
  537. latestValue = finalLast.Value
  538. }
  539. return
  540. }