package data

import (
	"errors"
	"fmt"
	"github.com/nosixtools/solarlunar"
	"github.com/shopspring/decimal"
	"hongze/hongze_chart_lib/models"
	"hongze/hongze_chart_lib/models/data_manage"
	"hongze/hongze_chart_lib/utils"
	"math"
	"strings"
	"time"
)

// GetChartPredictEdbInfoDataListByRule1 根据规则1获取预测数据
func GetChartPredictEdbInfoDataListByRule1(edbInfoId int, dataValue float64, startDate, endDate time.Time, frequency string, predictEdbInfoData []*models.EdbDataList, existMap map[string]float64) (newPredictEdbInfoData []*models.EdbDataList) {
	newPredictEdbInfoData = predictEdbInfoData
	//获取后面的预测数据
	dayList := getPredictEdbDayList(startDate, endDate, frequency)
	predictEdbInfoData = make([]*models.EdbDataList, 0)
	for k, v := range dayList {
		newPredictEdbInfoData = append(newPredictEdbInfoData, &models.EdbDataList{
			EdbDataId:     edbInfoId + 10000000000 + k,
			EdbInfoId:     edbInfoId,
			DataTime:      v.Format(utils.FormatDate),
			Value:         dataValue,
			DataTimestamp: (v.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
		})
		existMap[v.Format(utils.FormatDate)] = dataValue
	}
	return
}

// GetChartPredictEdbInfoDataListByRuleTb 根据同比值规则获取预测数据
// 2.1 同比: 在未来某一个时间段内,给定一个固定的同比增速a,用去年同期值X乘以同比增速(1+a),得到预测值Y=X(1+a)
// 例: 今年1-3月值,100,100,120。给定同比增速a=0.1,则明年1-3月预测值为: 100*1.1=110,100*1.1=110,120*1.1=132。
func GetChartPredictEdbInfoDataListByRuleTb(edbInfoId int, tbValue float64, startDate, endDate time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*models.EdbDataList, existMap map[string]float64) (newPredictEdbInfoData []*models.EdbDataList, minValue, maxValue float64) {
	allDataList := make([]*models.EdbDataList, 0)
	allDataList = append(allDataList, realPredictEdbInfoData...)
	allDataList = append(allDataList, predictEdbInfoData...)
	newPredictEdbInfoData = predictEdbInfoData

	index := len(allDataList)
	//获取后面的预测数据
	dayList := getPredictEdbDayList(startDate, endDate, frequency)
	predictEdbInfoData = make([]*models.EdbDataList, 0)
	for k, currentDate := range dayList {

		tmpData := &models.EdbDataList{
			EdbDataId: edbInfoId + 10000000000 + index + k,
			EdbInfoId: edbInfoId,
			DataTime:  currentDate.Format(utils.FormatDate),
			//Value:         dataValue,
			DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
		}

		var val float64
		var calculateStatus bool //计算结果
		//currentItem := existMap[av]
		//上一年的日期
		preDate := currentDate.AddDate(-1, 0, 0)
		preDateStr := preDate.Format(utils.FormatDate)
		if preValue, ok := existMap[preDateStr]; ok { //上一年同期找到
			val = TbzDiv(preValue, tbValue)
			calculateStatus = true
		} else {
			switch frequency {
			case "月度":
				//向上和向下,各找一个月
				nextDateDay := preDate
				preDateDay := preDate
				for i := 0; i <= 35; i++ {
					nextDateDayStr := nextDateDay.Format(utils.FormatDate)
					if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
						val = TbzDiv(preValue, tbValue)
						calculateStatus = true
						break
					} else {
						preDateDayStr := preDateDay.Format(utils.FormatDate)
						if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
							val = TbzDiv(preValue, tbValue)
							calculateStatus = true
							break
						}
					}
					nextDateDay = nextDateDay.AddDate(0, 0, 1)
					preDateDay = preDateDay.AddDate(0, 0, -1)
				}

			case "季度", "年度":
				if preValue, ok := existMap[preDateStr]; ok { //上一年同期->下一个月找到
					val = TbzDiv(preValue, tbValue)
					calculateStatus = true
					break
				}
			default:
				nextDateDay := preDate
				preDateDay := preDate

				for i := 0; i < 35; i++ {
					nextDateDayStr := nextDateDay.Format(utils.FormatDate)
					if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
						val = TbzDiv(preValue, tbValue)
						calculateStatus = true
						break
					} else {
						preDateDayStr := preDateDay.Format(utils.FormatDate)
						if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
							val = TbzDiv(preValue, tbValue)
							calculateStatus = true
							break
						} else {
							//fmt.Println("pre not find:", preDateStr, "i:", i)
						}
					}
					nextDateDay = nextDateDay.AddDate(0, 0, 1)
					preDateDay = preDateDay.AddDate(0, 0, -1)
				}
			}
		}

		if calculateStatus {
			tmpData.Value = val
			newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
			allDataList = append(allDataList, tmpData)
			existMap[tmpData.DataTime] = val

			// 最大最小值
			if val < minValue {
				minValue = val
			}
			if val > maxValue {
				maxValue = val
			}
		}
	}
	return
}

// TbzDiv 同比值计算
// @params a float64 去年同期值
// @params b float64 固定同比增速
func TbzDiv(a, b float64) (result float64) {
	if b != 0 {
		// 去年同期值
		af := decimal.NewFromFloat(a)

		// 同比增速
		bf := decimal.NewFromFloat(b)

		// 默认1
		cf := decimal.NewFromFloat(1)

		// 总增速
		val := bf.Add(cf)

		// 计算
		result, _ = val.Mul(af).RoundCeil(4).Float64()
	} else {
		result = 0
	}
	return
}

// GetChartPredictEdbInfoDataListByRuleTc 根据同差值规则获取预测数据
// 2.2 同差: 在未来某一个时间段内,给定一个固定的同比增加值a,用去年同期值X加上同比增加值A,得到预测值Y=X+a
// 例: 今年1-3月值,100,100,120。给定同比增加值a=10,则明年1-3月预测值为: 100+10=110,100+10=110,120+10=130
func GetChartPredictEdbInfoDataListByRuleTc(edbInfoId int, tcValue float64, startDate, endDate time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*models.EdbDataList, existMap map[string]float64) (newPredictEdbInfoData []*models.EdbDataList, minValue, maxValue float64) {
	allDataList := make([]*models.EdbDataList, 0)
	allDataList = append(allDataList, realPredictEdbInfoData...)
	allDataList = append(allDataList, predictEdbInfoData...)
	newPredictEdbInfoData = predictEdbInfoData

	index := len(allDataList)
	//获取后面的预测数据
	dayList := getPredictEdbDayList(startDate, endDate, frequency)
	predictEdbInfoData = make([]*models.EdbDataList, 0)
	for k, currentDate := range dayList {

		tmpData := &models.EdbDataList{
			EdbDataId: edbInfoId + 10000000000 + index + k,
			EdbInfoId: edbInfoId,
			DataTime:  currentDate.Format(utils.FormatDate),
			//Value:         dataValue,
			DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
		}

		var val float64
		var calculateStatus bool //计算结果
		//currentItem := existMap[av]
		//上一年的日期
		preDate := currentDate.AddDate(-1, 0, 0)
		preDateStr := preDate.Format(utils.FormatDate)
		if preValue, ok := existMap[preDateStr]; ok { //上一年同期找到
			val = TczDiv(preValue, tcValue)
			calculateStatus = true
		} else {
			switch frequency {
			case "月度":
				//向上和向下,各找一个月
				nextDateDay := preDate
				preDateDay := preDate
				for i := 0; i <= 35; i++ {
					nextDateDayStr := nextDateDay.Format(utils.FormatDate)
					if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
						val = TczDiv(preValue, tcValue)
						calculateStatus = true
						break
					} else {
						preDateDayStr := preDateDay.Format(utils.FormatDate)
						if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
							val = TczDiv(preValue, tcValue)
							calculateStatus = true
							break
						}
					}
					nextDateDay = nextDateDay.AddDate(0, 0, 1)
					preDateDay = preDateDay.AddDate(0, 0, -1)
				}

			case "季度", "年度":
				if preValue, ok := existMap[preDateStr]; ok { //上一年同期->下一个月找到
					val = TczDiv(preValue, tcValue)
					calculateStatus = true
					break
				}
			default:
				nextDateDay := preDate
				preDateDay := preDate

				for i := 0; i < 35; i++ {
					nextDateDayStr := nextDateDay.Format(utils.FormatDate)
					if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
						val = TczDiv(preValue, tcValue)
						calculateStatus = true
						break
					} else {
						preDateDayStr := preDateDay.Format(utils.FormatDate)
						if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
							val = TczDiv(preValue, tcValue)
							calculateStatus = true
							break
						} else {
							//fmt.Println("pre not find:", preDateStr, "i:", i)
						}
					}
					nextDateDay = nextDateDay.AddDate(0, 0, 1)
					preDateDay = preDateDay.AddDate(0, 0, -1)
				}
			}
		}

		if calculateStatus {
			tmpData.Value = val
			newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
			allDataList = append(allDataList, tmpData)
			existMap[tmpData.DataTime] = val

			// 最大最小值
			if val < minValue {
				minValue = val
			}
			if val > maxValue {
				maxValue = val
			}
		}
	}
	return
}

// TczDiv 环差值计算
// @params a float64 上一期值
// @params b float64 固定的环比增加值
func TczDiv(a, b float64) (result float64) {
	if b != 0 {
		// 上一期值
		af := decimal.NewFromFloat(a)

		// 固定的环比增加值
		bf := decimal.NewFromFloat(b)

		// 计算
		result, _ = af.Add(bf).RoundCeil(4).Float64()
	} else {
		result = 0
	}
	return
}

// GetChartPredictEdbInfoDataListByRuleHb 根据环比值规则获取预测数据
// 环比:在未来某一个时间段内,给定一个固定的环比增速a,用上一期值X乘以环比增速(1+a),得到预测值Y=X(1+a)
// 例: 最近1期值为100,给定环比增速a=0.2,则未来3期预测值为: 100*1.2=120,120*1.2=144,144*1.2=172.8
func GetChartPredictEdbInfoDataListByRuleHb(edbInfoId int, hbValue float64, startDate, endDate time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*models.EdbDataList, existMap map[string]float64) (newPredictEdbInfoData []*models.EdbDataList, minValue, maxValue float64) {
	allDataList := make([]*models.EdbDataList, 0)
	allDataList = append(allDataList, realPredictEdbInfoData...)
	allDataList = append(allDataList, predictEdbInfoData...)
	newPredictEdbInfoData = predictEdbInfoData

	index := len(allDataList)
	//获取后面的预测数据
	dayList := getPredictEdbDayList(startDate, endDate, frequency)
	for k, currentDate := range dayList {
		tmpK := index + k - 1 //上1期的值

		// 环比值计算
		val := HbzDiv(allDataList[tmpK].Value, hbValue)

		currentDateStr := currentDate.Format(utils.FormatDate)
		tmpData := &models.EdbDataList{
			EdbDataId:     edbInfoId + 10000000000 + index + k,
			EdbInfoId:     edbInfoId,
			DataTime:      currentDateStr,
			Value:         val,
			DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
		}
		newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
		allDataList = append(allDataList, tmpData)
		existMap[currentDateStr] = val

		// 最大最小值
		if val < minValue {
			minValue = val
		}
		if val > maxValue {
			maxValue = val
		}
	}
	return
}

// HbzDiv 环比值计算
// @params a float64 上一期值
// @params b float64 固定的环比增速
func HbzDiv(a, b float64) (result float64) {
	if b != 0 {
		// 上一期值
		af := decimal.NewFromFloat(a)

		// 固定的环比增速
		bf := decimal.NewFromFloat(b)

		// 默认1
		cf := decimal.NewFromFloat(1)

		// 总增速
		val := bf.Add(cf)

		// 计算
		result, _ = val.Mul(af).RoundCeil(4).Float64()
	} else {
		result = 0
	}
	return
}

// GetChartPredictEdbInfoDataListByRuleHc 根据环差值规则获取预测数据
// 2.4 环差:在未来某一个时间段内,给定一个固定的环比增加值a,用上一期值X加上环比增加值a,得到预测值Y=X+a
// 例: 最近1期值为100,给定环比增加值a=10,则未来3期预测值为: 100+10=110,110+10=120,120+10=130
func GetChartPredictEdbInfoDataListByRuleHc(edbInfoId int, hcValue float64, startDate, endDate time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*models.EdbDataList, existMap map[string]float64) (newPredictEdbInfoData []*models.EdbDataList, minValue, maxValue float64) {
	allDataList := make([]*models.EdbDataList, 0)
	allDataList = append(allDataList, realPredictEdbInfoData...)
	allDataList = append(allDataList, predictEdbInfoData...)
	newPredictEdbInfoData = predictEdbInfoData

	index := len(allDataList)
	//获取后面的预测数据
	dayList := getPredictEdbDayList(startDate, endDate, frequency)
	for k, currentDate := range dayList {
		tmpK := index + k - 1 //上1期的值

		// 环差别值计算
		val := HczDiv(allDataList[tmpK].Value, hcValue)

		currentDateStr := currentDate.Format(utils.FormatDate)
		tmpData := &models.EdbDataList{
			EdbDataId:     edbInfoId + 10000000000 + index + k,
			EdbInfoId:     edbInfoId,
			DataTime:      currentDateStr,
			Value:         val,
			DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
		}
		newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
		allDataList = append(allDataList, tmpData)
		existMap[currentDateStr] = val

		// 最大最小值
		if val < minValue {
			minValue = val
		}
		if val > maxValue {
			maxValue = val
		}
	}
	return
}

// HczDiv 环差值计算
// @params a float64 上一期值
// @params b float64 固定的环比增加值
func HczDiv(a, b float64) (result float64) {
	if b != 0 {
		// 上一期值
		af := decimal.NewFromFloat(a)

		// 固定的环比增加值
		bf := decimal.NewFromFloat(b)

		// 计算
		result, _ = af.Add(bf).RoundCeil(4).Float64()
	} else {
		result = 0
	}
	return
}

// GetChartPredictEdbInfoDataListByRuleNMoveMeanValue 根据N期移动均值规则获取预测数据
// 2.5 N期移动均值:在未来某一个时间段内,下一期值等于过去N期值得平均值。
// 例:最近3期值(N=3),为95,98,105则未来第1期值为 1/3*(95+98+105)=99.33, 未来第2期值为 1/3*(98+105+99.33)=100.78依次类推。
func GetChartPredictEdbInfoDataListByRuleNMoveMeanValue(edbInfoId int, nValue int, startDate, endDate time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*models.EdbDataList, existMap map[string]float64) (newPredictEdbInfoData []*models.EdbDataList, minValue, maxValue float64) {
	allDataList := make([]*models.EdbDataList, 0)
	allDataList = append(allDataList, realPredictEdbInfoData...)
	allDataList = append(allDataList, predictEdbInfoData...)
	newPredictEdbInfoData = predictEdbInfoData

	lenAllData := len(allDataList)
	if lenAllData < nValue || lenAllData <= 0 {
		return
	}
	if nValue <= 0 {
		return
	}
	// 分母
	decimalN := decimal.NewFromInt(int64(nValue))

	//获取后面的预测数据
	dayList := getPredictEdbDayList(startDate, endDate, frequency)
	for k, currentDate := range dayList {
		tmpIndex := lenAllData + k - 1 //上1期的值

		// 数据集合中的最后一个数据
		tmpDecimalVal := decimal.NewFromFloat(allDataList[tmpIndex].Value)
		for tmpK := 2; tmpK <= nValue; tmpK++ {
			tmpIndex2 := tmpIndex - tmpK //上N期的值
			tmpDecimalVal2 := decimal.NewFromFloat(allDataList[tmpIndex2].Value)
			tmpDecimalVal = tmpDecimalVal.Add(tmpDecimalVal2)
		}

		// N期移动均值计算
		val, _ := tmpDecimalVal.Div(decimalN).RoundCeil(4).Float64()

		currentDateStr := currentDate.Format(utils.FormatDate)
		tmpData := &models.EdbDataList{
			EdbDataId:     edbInfoId + 10000000000 + lenAllData + k,
			EdbInfoId:     edbInfoId,
			DataTime:      currentDateStr,
			Value:         val,
			DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
		}
		newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
		allDataList = append(allDataList, tmpData)
		existMap[currentDateStr] = val

		// 最大最小值
		if val < minValue {
			minValue = val
		}
		if val > maxValue {
			maxValue = val
		}
	}
	return
}

// GetChartPredictEdbInfoDataListByRuleNLinearRegression 根据N期移动均值规则获取预测数据
// 2.6N期段线性外推值:给出过去N期值所确定的线性回归方程(Y=aX+b)在未来一段时间内的推算值。回归方程虽然比较复杂,但各种编程语言应该都有现成的模块或函数,应该无需自己编写。
// 例1:过去5期值(N=5)分别为:3,5,7,9,11(每两期值之间的时间间隔相等)。那么按照线性回归方程推算,未来三期的预测值是:13,15,17。
//
// 例2:过去6期值(N=6)分别为:3,3,5,7,9,11(每两期值之间的时间间隔相等)。那么按照线性回归方程推算,未来三期的预测值是:12.33,14.05,15.76。例1和例2的区别在于,多加了一期数据,导致回归方程发生改变,从而预测值不同。
func GetChartPredictEdbInfoDataListByRuleNLinearRegression(edbInfoId int, nValue int, startDate, endDate time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*models.EdbDataList, existMap map[string]float64) (newPredictEdbInfoData []*models.EdbDataList, minValue, maxValue float64) {
	//var errMsg string
	//defer func() {
	//	if errMsg != `` {
	//		go alarm_msg.SendAlarmMsg("更新上海的token失败;ERR:"+err.Error(), 3)
	//	}
	//}()
	allDataList := make([]*models.EdbDataList, 0)
	allDataList = append(allDataList, realPredictEdbInfoData...)
	allDataList = append(allDataList, predictEdbInfoData...)
	newPredictEdbInfoData = predictEdbInfoData

	lenAllData := len(allDataList)
	if lenAllData < nValue || lenAllData <= 0 {
		return
	}

	if nValue <= 1 {
		return
	}

	//获取后面的预测数据
	// 获取线性方程公式的a、b的值
	coordinateData := make([]Coordinate, 0)
	for tmpK := nValue; tmpK > 0; tmpK-- {
		tmpIndex2 := lenAllData - tmpK //上N期的值
		tmpCoordinate := Coordinate{
			X: float64(nValue - tmpK + 1),
			Y: allDataList[tmpIndex2].Value,
		}
		coordinateData = append(coordinateData, tmpCoordinate)
	}
	a, b := getLinearResult(coordinateData)
	//fmt.Println("a:", a, ";======b:", b)

	dayList := getPredictEdbDayList(startDate, endDate, frequency)
	for k, currentDate := range dayList {
		tmpK := nValue + k + 1

		aDecimal := decimal.NewFromFloat(a)
		xDecimal := decimal.NewFromInt(int64(tmpK))
		bDecimal := decimal.NewFromFloat(b)

		val, _ := aDecimal.Mul(xDecimal).Add(bDecimal).RoundCeil(4).Float64()

		currentDateStr := currentDate.Format(utils.FormatDate)
		tmpData := &models.EdbDataList{
			EdbDataId:     edbInfoId + 10000000000 + lenAllData + k,
			EdbInfoId:     edbInfoId,
			DataTime:      currentDateStr,
			Value:         val,
			DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
		}
		newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
		allDataList = append(allDataList, tmpData)
		existMap[currentDateStr] = val

		// 最大最小值
		if val < minValue {
			minValue = val
		}
		if val > maxValue {
			maxValue = val
		}
	}
	return
}

// Series is a container for a series of data
type Series []Coordinate

// Coordinate holds the data in a series
type Coordinate struct {
	X, Y float64
}

func getLinearResult(s []Coordinate) (gradient, intercept float64) {
	if len(s) <= 1 {
		return
	}

	// Placeholder for the math to be done
	var sum [5]float64

	// Loop over data keeping index in place
	i := 0
	for ; i < len(s); i++ {
		sum[0] += s[i].X
		sum[1] += s[i].Y
		sum[2] += s[i].X * s[i].X
		sum[3] += s[i].X * s[i].Y
		sum[4] += s[i].Y * s[i].Y
	}

	// Find gradient and intercept
	f := float64(i)
	gradient = (f*sum[3] - sum[0]*sum[1]) / (f*sum[2] - sum[0]*sum[0])
	intercept = (sum[1] / f) - (gradient * sum[0] / f)

	//fmt.Println("gradient:", gradient, ";intercept:", intercept)
	// Create the new regression series
	//for j := 0; j < len(s); j++ {
	//	regressions = append(regressions, Coordinate{
	//		X: s[j].X,
	//		Y: s[j].X*gradient + intercept,
	//	})
	//}

	return
}

//	GetChartPredictEdbInfoDataListByRuleTrendsHC 根据动态环比增加值的计算规则获取预测数据
//
// 研究员有对预测指标进行动态环差计算的需求,即预测指标使用环差规则进行预测时,环比增加值不是固定值,而是由几个预测指标计算得出的动态变化的值;
// 需求说明:
// 1、增加“动态环差”预测规则;
// 2、环比增加值在弹窗设置;
// 3、动态环差预测举例:
// 指标A实际最新数据为2022-10-27(100);
// 预测指标B预测数据为2022-10-28(240)、2022-10-29(300);
// 预测指标C预测数据为2022-10-28(260)、2022-10-29(310);
// 计算公式为B-C;
// 则指标A至2022-10-29的预测值为2022-10-28(100+(240-260)=80)、2022-10-29(80+(300-310)=90);
// 注:动态环比增加值的计算遵从计算指标的计算规则,即用于计算的指标若有部分指标缺少部分日期数据,则这部分日期数据不做计算,为空;若动态环比增加值某一天为空,则往前追溯最近一期有值的环比增加值作为该天的数值参与计算;
func GetChartPredictEdbInfoDataListByRuleTrendsHC(edbInfoId, configId int, startDate, endDate time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*models.EdbDataList, existMap map[string]float64) (newPredictEdbInfoData []*models.EdbDataList, minValue, maxValue float64) {
	allDataList := make([]*models.EdbDataList, 0)
	allDataList = append(allDataList, realPredictEdbInfoData...)
	allDataList = append(allDataList, predictEdbInfoData...)
	newPredictEdbInfoData = predictEdbInfoData

	lenAllData := len(allDataList)
	if lenAllData <= 0 {
		return
	}

	hcDataMap := make(map[string]float64) //规则计算的环差值map

	//已经生成的动态数据
	tmpPredictEdbRuleDataList, err := data_manage.GetPredictEdbRuleDataList(edbInfoId, configId, startDate.Format(utils.FormatDate), endDate.Format(utils.FormatDate))
	if err != nil {
		return
	}
	for _, v := range tmpPredictEdbRuleDataList {
		hcDataMap[v.DataTime] = v.Value
	}
	dayList := getPredictEdbDayList(startDate, endDate, frequency)
	for k, currentDate := range dayList {
		// 最近一条数据
		tmpLenAllDataList := len(allDataList)
		lastValue := allDataList[tmpLenAllDataList-1].Value

		// 动态环差值数据
		currentDateStr := currentDate.Format(utils.FormatDate)
		hcVal, ok := hcDataMap[currentDateStr]
		if !ok {
			continue
		}
		lastValueDecimal := decimal.NewFromFloat(lastValue)
		hcValDecimal := decimal.NewFromFloat(hcVal)

		val, _ := lastValueDecimal.Add(hcValDecimal).RoundCeil(4).Float64()

		tmpData := &models.EdbDataList{
			EdbDataId:     edbInfoId + 10000000000 + lenAllData + k,
			EdbInfoId:     edbInfoId,
			DataTime:      currentDateStr,
			Value:         val,
			DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
		}
		newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
		allDataList = append(allDataList, tmpData)
		existMap[currentDateStr] = val

		// 最大最小值
		if val < minValue {
			minValue = val
		}
		if val > maxValue {
			maxValue = val
		}
	}
	return
}

//	GetChartPredictEdbInfoDataListByRuleFinalValueHc 根据 给定终值后插值 规则获取预测数据
//
// 项目背景:
// 假设螺纹产量在2023年1月1号的预测值是255万吨,从当下到2023年1月1号,螺纹产量将会线性变化,那么每一期的螺纹产量是多少?
// 算法:从当下(2022/10/28)到2023/1/1号,一共65天,从当前值(305.02)到255,差值-50.02,
// 则每日环差为-50.02/65=-0.7695。因为数据点是周度频率,每周环差为,-0.3849*7=-5.3868。
// 从以上计算过程可看出,“给定终值后差值”的算法,是在“环差”算法的基础上,做的一个改动。即这个”环差值”=【(终值-最新值)/终值与最新值得日期差】*数据频率
// 需求说明:
// 1、增加一个预测规则,名为“给定终值后插值”,给定预测截止日期和预测终值,计算最新数据日期至预测截止日期的时间差T,计算最新数据和预测终值的数据差S,数据频率与指标频度有关,日度=1,周度=7,旬度=10,月度=30,季度=90,年度=365,环差值=S/T*频率,预测数值=前一天数值+环差值;
// 2、最新数据值和日期改动后,需重新计算环差值和预测数值;
func GetChartPredictEdbInfoDataListByRuleFinalValueHc(edbInfoId int, finalValue float64, startDate, endDate time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*models.EdbDataList, existMap map[string]float64) (newPredictEdbInfoData []*models.EdbDataList, minValue, maxValue float64) {
	allDataList := make([]*models.EdbDataList, 0)
	allDataList = append(allDataList, realPredictEdbInfoData...)
	allDataList = append(allDataList, predictEdbInfoData...)
	newPredictEdbInfoData = predictEdbInfoData

	index := len(allDataList)
	//获取后面的预测日期
	dayList := getPredictEdbDayList(startDate, endDate, frequency)
	lenDay := len(dayList)
	if lenDay <= 0 {
		return
	}

	var hcValue float64
	lastValueDeciamal := decimal.NewFromFloat(allDataList[index-1].Value)            // 实际数据的最后一个值
	finalValueDeciamal := decimal.NewFromFloat(finalValue)                           // 给定的终止数据
	dayDecimal := decimal.NewFromInt(int64(lenDay))                                  // 需要作为分母的期数
	hcValue, _ = finalValueDeciamal.Sub(lastValueDeciamal).Div(dayDecimal).Float64() // 计算出来的环差值

	//获取后面的预测数据
	predictEdbInfoData = make([]*models.EdbDataList, 0)
	lastK := lenDay - 1 // 最后的日期
	for k, currentDate := range dayList {
		tmpK := index + k - 1 //上1期的值

		var val float64
		// 环差别值计算
		if k == lastK { //如果是最后一天,那么就用最终值,否则就计算
			val = finalValue
		} else {
			val = HczDiv(allDataList[tmpK].Value, hcValue)
		}

		currentDateStr := currentDate.Format(utils.FormatDate)
		tmpData := &models.EdbDataList{
			EdbDataId:     edbInfoId + 10000000000 + index + k,
			EdbInfoId:     edbInfoId,
			DataTime:      currentDateStr,
			Value:         val,
			DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
		}
		newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
		allDataList = append(allDataList, tmpData)
		existMap[currentDateStr] = val

		// 最大最小值
		if val < minValue {
			minValue = val
		}
		if val > maxValue {
			maxValue = val
		}
	}
	return
}

// SeasonConf 季节性规则的配置
type SeasonConf struct {
	Calendar string `description:"公历、农历"`
	YearType int    `description:"选择方式,1:连续N年;2:指定年份"`
	NValue   int    `description:"连续N年"`
	YearList []int  `description:"指定年份列表"`
}

//	GetChartPredictEdbInfoDataListByRuleSeason 根据 季节性 规则获取预测数据
//
// ETA预测规则:季节性
// 已知选定指标A最近更新日期: 2022-12-6  200
// 设置预测截止日期2023-01-06
// 1、选择过去N年,N=3
// 则过去N年为2021、2020、2019
// 指标A日期	实际值	指标A日期
// 2019/12/5	150	2019/12/6
// 2020/12/5	180	2020/12/6
// 2021/12/5	210	2021/12/6
// 2019/12/31	200	2020/1/1
// 2020/12/31	210	2021/1/1
// 2021/12/31	250	2022/1/1
//
// 计算12.7预测值,求过去N年环差均值=[(100-150)+(160-180)+(250-210)]/3=-10
// 则12.7预测值=12.6值+过去N年环差均值=200-10=190
// 以此类推...
//
// 计算2023.1.2预测值,求过去N年环差均值=[(300-200)+(220-210)+(260-250)]/3=40
// 则2023.1.2预测值=2023.1.1值+过去N年环差均值
func GetChartPredictEdbInfoDataListByRuleSeason(edbInfoId int, yearsList []int, calendar string, startDate, endDate time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*models.EdbDataList, existMap map[string]float64) (newPredictEdbInfoData []*models.EdbDataList, minValue, maxValue float64, err error) {
	allDataList := make([]*models.EdbDataList, 0)
	allDataList = append(allDataList, realPredictEdbInfoData...)
	allDataList = append(allDataList, predictEdbInfoData...)
	newPredictEdbInfoData = predictEdbInfoData

	// 插值法数据处理
	handleDataMap := make(map[string]float64)
	err = HandleDataByLinearRegression(allDataList, handleDataMap)
	if err != nil {
		return
	}

	// 获取每个年份的日期数据需要平移的天数
	moveDayMap := make(map[int]int, 0) // 每个年份的春节公历
	{
		if calendar == "公历" {
			for _, year := range yearsList {
				moveDayMap[year] = 0 //公历就不平移了
			}
		} else {
			currentDay := time.Now()
			if currentDay.Month() >= 11 { //如果大于等于11月份,那么用的是下一年的春节
				currentDay = currentDay.AddDate(1, 0, 0)
			}

			currentYear := currentDay.Year()
			currentYearCjnl := fmt.Sprintf("%d-01-01", currentYear)            //当年的春节农历
			currentYearCjgl := solarlunar.LunarToSolar(currentYearCjnl, false) //当年的春节公历
			currentYearCjglTime, tmpErr := time.ParseInLocation(utils.FormatDate, currentYearCjgl, time.Local)
			if tmpErr != nil {
				err = errors.New("当前春节公历日期转换失败:" + tmpErr.Error())
				return
			}

			// 指定的年份
			for _, year := range yearsList {
				tmpYearCjnl := fmt.Sprintf("%d-01-01", year)               //指定年的春节农历
				tmpYearCjgl := solarlunar.LunarToSolar(tmpYearCjnl, false) //指定年的春节公历
				//moveDayList = append(moveDayList, 0) //公历就不平移了

				tmpYearCjglTime, tmpErr := time.ParseInLocation(utils.FormatDate, tmpYearCjgl, time.Local)
				if tmpErr != nil {
					err = errors.New(fmt.Sprintf("%d公历日期转换失败:%s", year, tmpErr.Error()))
					return
				}

				tmpCurrentYearCjglTime := currentYearCjglTime.AddDate(year-currentYear, 0, 0)
				moveDay := utils.GetTimeSubDay(tmpYearCjglTime, tmpCurrentYearCjglTime)
				moveDayMap[year] = moveDay //公历平移
			}
		}
	}

	index := len(allDataList)
	//获取后面的预测日期
	dayList := getPredictEdbDayList(startDate, endDate, frequency)

	//获取后面的预测数据
	predictEdbInfoData = make([]*models.EdbDataList, 0)
	for k, currentDate := range dayList {
		// 如果遇到闰二月,如2.29,去掉该天数据
		if strings.Contains(currentDate.Format(utils.FormatDate), "02-29") {
			continue
		}
		tmpHistoryVal := decimal.NewFromFloat(0) //往期的差值总和
		tmpHistoryValNum := 0                    // 往期差值计算的数量

		tmpLenAllDataList := len(allDataList)
		tmpK := tmpLenAllDataList - 1    //上1期数据的下标
		lastDayData := allDataList[tmpK] // 上1期的数据
		lastDayStr := lastDayData.DataTime
		lastDayVal := lastDayData.Value
		lastDay, tmpErr := time.ParseInLocation(utils.FormatDate, lastDayStr, time.Local)
		if tmpErr != nil {
			err = errors.New("获取上期日期转换失败:" + tmpErr.Error())
		}
		for _, year := range yearsList {
			moveDay := moveDayMap[year] //需要移动的天数
			var tmpHistoryCurrentVal, tmpHistoryLastVal float64
			var isFindHistoryCurrent, isFindHistoryLast bool //是否找到前几年的数据

			//前几年当日的日期
			tmpHistoryCurrentDate := currentDate.AddDate(year-currentDate.Year(), 0, -moveDay)
			for i := 0; i <= 35; i++ { // 前后35天找数据,找到最近的值,先向后面找,再往前面找
				tmpDate := tmpHistoryCurrentDate.AddDate(0, 0, i)
				if val, ok := handleDataMap[tmpDate.Format(utils.FormatDate)]; ok {
					tmpHistoryCurrentVal = val
					isFindHistoryCurrent = true
					break
				} else {
					tmpDate := tmpHistoryCurrentDate.AddDate(0, 0, -i)
					if val, ok := handleDataMap[tmpDate.Format(utils.FormatDate)]; ok {
						tmpHistoryCurrentVal = val
						isFindHistoryCurrent = true
						break
					}
				}
			}

			//前几年上一期的日期
			tmpHistoryLastDate := lastDay.AddDate(year-lastDay.Year(), 0, -moveDay)
			for i := 0; i <= 35; i++ { // 前后35天找数据,找到最近的值,先向后面找,再往前面找
				tmpDate := tmpHistoryLastDate.AddDate(0, 0, i)
				if val, ok := handleDataMap[tmpDate.Format(utils.FormatDate)]; ok {
					tmpHistoryLastVal = val
					isFindHistoryLast = true
					break
				} else {
					tmpDate := tmpHistoryLastDate.AddDate(0, 0, -i)
					if val, ok := handleDataMap[tmpDate.Format(utils.FormatDate)]; ok {
						tmpHistoryLastVal = val
						isFindHistoryLast = true
						break
					}
				}
			}

			// 如果两个日期对应的数据都找到了,那么计算两期的差值
			if isFindHistoryCurrent && isFindHistoryLast {
				af := decimal.NewFromFloat(tmpHistoryCurrentVal)
				bf := decimal.NewFromFloat(tmpHistoryLastVal)
				tmpHistoryVal = tmpHistoryVal.Add(af.Sub(bf))
				tmpHistoryValNum++
			}
		}

		//计算的差值与选择的年份数量不一致,那么当前日期不计算
		if tmpHistoryValNum != len(yearsList) {
			continue
		}
		lastDayValDec := decimal.NewFromFloat(lastDayVal)
		val, _ := tmpHistoryVal.Div(decimal.NewFromInt(int64(tmpHistoryValNum))).Add(lastDayValDec).RoundCeil(4).Float64()

		currentDateStr := currentDate.Format(utils.FormatDate)
		tmpData := &models.EdbDataList{
			EdbDataId:     edbInfoId + 10000000000 + index + k,
			EdbInfoId:     edbInfoId,
			DataTime:      currentDateStr,
			Value:         val,
			DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
		}
		newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
		allDataList = append(allDataList, tmpData)
		existMap[currentDateStr] = val

		// 继续使用插值法补充新预测日期的数据之间的值
		err = HandleDataByLinearRegression([]*models.EdbDataList{
			lastDayData, tmpData,
		}, handleDataMap)
		if err != nil {
			return
		}

		// 最大最小值
		if val < minValue {
			minValue = val
		}
		if val > maxValue {
			maxValue = val
		}
	}
	return
}

// MoveAverageConf 移动平均同比规则的配置
type MoveAverageConf struct {
	Year   int `description:"指定年份"`
	NValue int `description:"N期的数据"`
}

//	GetChartPredictEdbInfoDataListByRuleMoveAverageTb 根据 移动平均同比 规则获取预测数据
//
// ETA预测规则:季节性
// 2、选择指定N年,N=3
// 指定N年为2012、2015、2018
// 指标A日期	实际值	指标A日期	实际值
// 2012/12/5	150	2012/12/6	130
// 2015/12/5	180	2015/12/6	150
// 2018/12/5	210	2018/12/6	260
// 2012/12/31	200	2013/1/1	200
// 2015/12/31	210	2016/1/1	250
// 2018/12/31	250	2019/1/1	270
// 计算12.7预测值,求过去N年环差均值=[(130-150)+(150-180)+(290-210)]/3=10
// 则12.7预测值=12.6值+过去N年环差均值=200+10=210
// 以此类推...
// 计算2023.1.2预测值,求过去N年环差均值=[(200-200)+(250-210)+(270-250)]/3=16.67
// 则2023.1.2预测值=2023.1.1值+过去N年环差均值
func GetChartPredictEdbInfoDataListByRuleMoveAverageTb(edbInfoId int, nValue, year int, startDate, endDate time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*models.EdbDataList, existMap map[string]float64) (newPredictEdbInfoData []*models.EdbDataList, minValue, maxValue float64, err error) {
	allDataList := make([]*models.EdbDataList, 0)
	allDataList = append(allDataList, realPredictEdbInfoData...)
	allDataList = append(allDataList, predictEdbInfoData...)
	newPredictEdbInfoData = predictEdbInfoData

	lenAllData := len(allDataList)
	if lenAllData < nValue || lenAllData <= 0 {
		return
	}
	if nValue <= 0 {
		return
	}
	// 分母
	decimalN := decimal.NewFromInt(int64(nValue))

	//获取后面的预测数据
	dayList := getPredictEdbDayList(startDate, endDate, frequency)
	if len(dayList) <= 0 {
		return
	}
	// 需要减去的年份
	subYear := year - dayList[0].Year()
	for k, currentDate := range dayList {
		tmpLenAllDataList := len(allDataList)
		tmpIndex := tmpLenAllDataList - 1 //上1期数据的下标

		averageDateList := make([]string, 0) //计算平均数的日期

		// 数据集合中的最后一个数据
		tmpDecimalVal := decimal.NewFromFloat(allDataList[tmpIndex].Value)
		averageDateList = append(averageDateList, allDataList[tmpIndex].DataTime)
		for tmpK := 1; tmpK < nValue; tmpK++ {
			tmpIndex2 := tmpIndex - tmpK //上N期的值
			tmpDecimalVal2 := decimal.NewFromFloat(allDataList[tmpIndex2].Value)
			tmpDecimalVal = tmpDecimalVal.Add(tmpDecimalVal2)
			averageDateList = append(averageDateList, allDataList[tmpIndex2].DataTime)
		}
		// 最近的N期平均值
		tmpAverageVal := tmpDecimalVal.Div(decimalN)

		var tmpHistoryCurrentVal float64                 // 前几年当日的数据值
		var isFindHistoryCurrent, isFindHistoryLast bool //是否找到前几年的数据
		tmpHistoryDecimalVal := decimal.NewFromFloat(0)  //前几年N期数据总值

		{
			// 前几年N期汇总期数
			tmpHistoryValNum := 0
			{
				//前几年当日的日期
				tmpHistoryCurrentDate := currentDate.AddDate(subYear, 0, 0)
				for i := 0; i <= 35; i++ { // 前后35天找数据,找到最近的值,先向后面找,再往前面找
					tmpDate := tmpHistoryCurrentDate.AddDate(0, 0, i)
					if val, ok := existMap[tmpDate.Format(utils.FormatDate)]; ok {
						tmpHistoryCurrentVal = val
						isFindHistoryCurrent = true
						break
					} else {
						tmpDate := tmpHistoryCurrentDate.AddDate(0, 0, -i)
						if val, ok := existMap[tmpDate.Format(utils.FormatDate)]; ok {
							tmpHistoryCurrentVal = val
							isFindHistoryCurrent = true
							break
						}
					}
				}
			}

			for _, averageDate := range averageDateList {
				lastDay, tmpErr := time.ParseInLocation(utils.FormatDate, averageDate, time.Local)
				if tmpErr != nil {
					err = tmpErr
					return
				}
				//前几年上一期的日期
				tmpHistoryLastDate := lastDay.AddDate(subYear, 0, 0)
				for i := 0; i <= 35; i++ { // 前后35天找数据,找到最近的值,先向后面找,再往前面找
					tmpDate := tmpHistoryLastDate.AddDate(0, 0, i)
					if val, ok := existMap[tmpDate.Format(utils.FormatDate)]; ok {
						tmpDecimalVal2 := decimal.NewFromFloat(val)
						tmpHistoryDecimalVal = tmpHistoryDecimalVal.Add(tmpDecimalVal2)
						tmpHistoryValNum++
						break
					} else {
						tmpDate := tmpHistoryLastDate.AddDate(0, 0, -i)
						if val, ok := existMap[tmpDate.Format(utils.FormatDate)]; ok {
							tmpDecimalVal2 := decimal.NewFromFloat(val)
							tmpHistoryDecimalVal = tmpHistoryDecimalVal.Add(tmpDecimalVal2)
							tmpHistoryValNum++
							break
						}
					}
				}
			}

			// 汇总期数与配置的N期数量一致
			if tmpHistoryValNum == nValue {
				isFindHistoryLast = true
			}
		}

		// 如果没有找到前几年的汇总数据,或者没有找到前几年当日的数据,那么退出当前循环,进入下一循环
		if !isFindHistoryLast || !isFindHistoryCurrent {
			continue
		}

		// 计算最近N期平均值
		tmpHistoryAverageVal := tmpHistoryDecimalVal.Div(decimalN)
		// 计算最近N期同比值
		tbVal := tmpAverageVal.Div(tmpHistoryAverageVal)

		// 预测值结果 = 同比年份同期值(tmpHistoryCurrentVal的值)* 同比值(tbVal的值)
		val, _ := decimal.NewFromFloat(tmpHistoryCurrentVal).Mul(tbVal).RoundCeil(4).Float64()

		currentDateStr := currentDate.Format(utils.FormatDate)
		tmpData := &models.EdbDataList{
			EdbDataId:     edbInfoId + 10000000000 + lenAllData + k,
			EdbInfoId:     edbInfoId,
			DataTime:      currentDateStr,
			Value:         val,
			DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
		}
		newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
		allDataList = append(allDataList, tmpData)
		existMap[currentDateStr] = val

		// 最大最小值
		if val < minValue {
			minValue = val
		}
		if val > maxValue {
			maxValue = val
		}
	}
	return
}

// GetChartPredictEdbInfoDataListByRuleTbzscz 根据 同比增速差值 规则获取预测数据
// 同比增速差值计算方式:
// 1、首先计算出所选指标实际最新日期值的同比增速:(本期数值-同期数值)÷同期数值*100%
// 2、根据预测截止日期的同比增速终值、最新日期值的同比增速、与最新日期距离截止日期的期数,计算出到截止日期为止的每一期的同比增速。(等差规则计算每一期的同比增速,结合去年同期值,计算出每一期的同比预测值)。公差=(末项-首项)÷(n-1),an=a1+(n-1)d,(n为正整数,n大于等于2)
// 3、根据去年同期值和未来每一期的同比增速值,求出同比预测值,同比预测值=同期值*(1+同比增速)
// 同比增速差值:计算最新数据的同比增速((本期数值-同期数值)÷同期数值*100%),结合同比增速终值与期数,计算每一期同比增速,进而求出同比预测值。
//
// 例:如上图所示指标,(1)最新日期值2022-12-31   141175 ,结合同期值,计算同比增速;
// (2)同比增速终值,若为50%,    预测日期为2023-03-31,则根据(1)中的同比增速值与同比增速终值,计算出中间两期的同比增速;
// (3)求出每一期的预测同比值,预测同比值=同期值*(1+同比增速)
func GetChartPredictEdbInfoDataListByRuleTbzscz(edbInfoId int, tbEndValue float64, dayList []time.Time, frequency string, realPredictEdbInfoData, predictEdbInfoData []*models.EdbDataList, existMap map[string]float64) (newPredictEdbInfoData []*models.EdbDataList, minValue, maxValue float64) {
	allDataList := make([]*models.EdbDataList, 0)
	allDataList = append(allDataList, realPredictEdbInfoData...)
	allDataList = append(allDataList, predictEdbInfoData...)
	newPredictEdbInfoData = predictEdbInfoData

	index := len(allDataList)

	// 获取近期数据的同比值
	if index <= 0 {
		return
	}
	lastData := allDataList[index-1]
	lastDayTime, _ := time.ParseInLocation(utils.FormatDate, lastData.DataTime, time.Local)

	var lastTb decimal.Decimal // 计算最新数据与上一期的数据同比值
	{
		//上一年的日期
		preDate := lastDayTime.AddDate(-1, 0, 0)
		preDateStr := preDate.Format(utils.FormatDate)
		if preValue, ok := existMap[preDateStr]; ok { //上一年同期找到
			lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
		} else {
			switch frequency {
			case "月度":
				//向上和向下,各找一个月
				nextDateDay := preDate
				preDateDay := preDate
				for i := 0; i <= 35; i++ {
					nextDateDayStr := nextDateDay.Format(utils.FormatDate)
					if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
						lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
						break
					} else {
						preDateDayStr := preDateDay.Format(utils.FormatDate)
						if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
							lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
							break
						}
					}
					nextDateDay = nextDateDay.AddDate(0, 0, 1)
					preDateDay = preDateDay.AddDate(0, 0, -1)
				}

			case "季度", "年度":
				if preValue, ok := existMap[preDateStr]; ok { //上一年同期->下一个月找到
					lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
					break
				}
			default:
				nextDateDay := preDate
				preDateDay := preDate

				for i := 0; i < 35; i++ {
					nextDateDayStr := nextDateDay.Format(utils.FormatDate)
					if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
						lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
						break
					} else {
						preDateDayStr := preDateDay.Format(utils.FormatDate)
						if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
							lastTb = (decimal.NewFromFloat(lastData.Value)).Sub(decimal.NewFromFloat(preValue)).Div(decimal.NewFromFloat(preValue))
							break
						} else {
							//fmt.Println("pre not find:", preDateStr, "i:", i)
						}
					}
					nextDateDay = nextDateDay.AddDate(0, 0, 1)
					preDateDay = preDateDay.AddDate(0, 0, -1)
				}
			}
		}
	}

	//获取后面的预测数据
	lenDay := len(dayList)
	tbEndValueDecimal := decimal.NewFromFloat(tbEndValue)
	avgTbVal := tbEndValueDecimal.Sub(lastTb).Div(decimal.NewFromInt(int64(lenDay)))

	predictEdbInfoData = make([]*models.EdbDataList, 0)
	for k, currentDate := range dayList {
		var tbValue decimal.Decimal
		if k == lenDay-1 { // 如果是最后的日期了,那么就用终值去计算
			tbValue = tbEndValueDecimal.Add(decimal.NewFromInt(1))
		} else { // 最近数据的同比值 + (平均增值乘以当前期数)
			tbValue = lastTb.Add(avgTbVal.Mul(decimal.NewFromInt(int64(k + 1)))).Add(decimal.NewFromInt(1))
		}
		tmpData := &models.EdbDataList{
			EdbDataId: edbInfoId + 100000 + index + k,
			EdbInfoId: edbInfoId,
			DataTime:  currentDate.Format(utils.FormatDate),
			//Value:         dataValue,
			DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
		}

		var val float64
		var calculateStatus bool //计算结果
		//currentItem := existMap[av]
		//上一年的日期
		preDate := currentDate.AddDate(-1, 0, 0)
		preDateStr := preDate.Format(utils.FormatDate)
		if preValue, ok := existMap[preDateStr]; ok { //上一年同期找到
			val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).RoundCeil(4).Float64()
			calculateStatus = true
		} else {
			switch frequency {
			case "月度":
				//向上和向下,各找一个月
				nextDateDay := preDate
				preDateDay := preDate
				for i := 0; i <= 35; i++ {
					nextDateDayStr := nextDateDay.Format(utils.FormatDate)
					if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
						val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).RoundCeil(4).Float64()
						calculateStatus = true
						break
					} else {
						preDateDayStr := preDateDay.Format(utils.FormatDate)
						if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
							val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).RoundCeil(4).Float64()
							calculateStatus = true
							break
						}
					}
					nextDateDay = nextDateDay.AddDate(0, 0, 1)
					preDateDay = preDateDay.AddDate(0, 0, -1)
				}

			case "季度", "年度":
				if preValue, ok := existMap[preDateStr]; ok { //上一年同期->下一个月找到
					val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).RoundCeil(4).Float64()
					calculateStatus = true
					break
				}
			default:
				nextDateDay := preDate
				preDateDay := preDate

				for i := 0; i < 35; i++ {
					nextDateDayStr := nextDateDay.Format(utils.FormatDate)
					if preValue, ok := existMap[nextDateDayStr]; ok { //上一年同期->下一个月找到
						val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).RoundCeil(4).Float64()
						calculateStatus = true
						break
					} else {
						preDateDayStr := preDateDay.Format(utils.FormatDate)
						if preValue, ok := existMap[preDateDayStr]; ok { //上一年同期->上一个月找到
							val, _ = decimal.NewFromFloat(preValue).Mul(tbValue).RoundCeil(4).Float64()
							calculateStatus = true
							break
						} else {
							//fmt.Println("pre not find:", preDateStr, "i:", i)
						}
					}
					nextDateDay = nextDateDay.AddDate(0, 0, 1)
					preDateDay = preDateDay.AddDate(0, 0, -1)
				}
			}
		}

		if calculateStatus {
			tmpData.Value = val
			newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
			allDataList = append(allDataList, tmpData)
			existMap[tmpData.DataTime] = val

			// 最大最小值
			if val < minValue {
				minValue = val
			}
			if val > maxValue {
				maxValue = val
			}
		}
	}
	return
}

// RuleLineNhConf 一元线性拟合规则的配置
type RuleLineNhConf struct {
	StartDate string `description:"开始日期"`
	EndDate   string `description:"结束日期"`
	MoveDay   int    `description:"移动天数"`
	EdbInfoId int    `description:"指标id"`
}

//	GetChartPredictEdbInfoDataListByRuleLineNh 根据 一元线性拟合 的计算规则获取预测数据
//
// 选择被预测的指标B(作为自变量,非预测指标),选择指标A(作为因变量,可以是基础指标和预测指标)
// 2、选择拟合时间段,起始日期至今或指定时间段,选择至今,在计算时截止到指标B的最新日期
// 3、设定A领先B时间(天),正整数、负整数、0
// 4、调用拟合残差的数据预处理和算法,给出拟合方程Y=aX+b的系数a,b
// 5、指标A代入拟合方程得到拟合预测指标B',拟合预测指标使用指标B的频度,在指标B的实际值后面连接拟合预测指标B'对应日期的预测值
//
// 注:选择预测截止日期,若所选日期  ≤  指标A设置领先后的日期序列,则预测指标日期最新日期有值(在指标B'的有值范围内);若所选日期 > 指标A设置领先后的日期序列,则预测指标只到指标A领先后的日期序列(超出指标B'的有值范围,最多到指标B'的最新值);指标A、B更新后,更新预测指标
func GetChartPredictEdbInfoDataListByRuleLineNh(edbInfoId int, dayList []time.Time, realPredictEdbInfoData, predictEdbInfoData []*models.EdbDataList, newNhccDataMap, existMap map[string]float64) (newPredictEdbInfoData []*models.EdbDataList, minValue, maxValue float64, err error) {
	allDataList := make([]*models.EdbDataList, 0)
	allDataList = append(allDataList, realPredictEdbInfoData...)
	allDataList = append(allDataList, predictEdbInfoData...)
	newPredictEdbInfoData = predictEdbInfoData

	lenAllData := len(allDataList)
	if lenAllData <= 0 {
		return
	}

	for k, currentDate := range dayList {
		// 动态拟合残差值数据
		currentDateStr := currentDate.Format(utils.FormatDate)
		val, ok := newNhccDataMap[currentDateStr]
		if !ok {
			continue
		}
		tmpData := &models.EdbDataList{
			EdbDataId:     edbInfoId + 100000 + lenAllData + k,
			EdbInfoId:     edbInfoId,
			DataTime:      currentDateStr,
			Value:         val,
			DataTimestamp: (currentDate.UnixNano() / 1e6) + 1000, //前端需要让加1s,说是2022-09-01 00:00:00 这样的整点不合适
		}
		newPredictEdbInfoData = append(newPredictEdbInfoData, tmpData)
		allDataList = append(allDataList, tmpData)
		existMap[currentDateStr] = val

		// 最大最小值
		if val < minValue {
			minValue = val
		}
		if val > maxValue {
			maxValue = val
		}
	}
	return
}

// getCalculateNhccData 获取计算出来的 拟合残差 数据
func getCalculateNhccData(secondDataList []*models.EdbDataList, ruleConf RuleLineNhConf) (newBDataMap map[string]float64, err error) {
	firstEdbInfoId := ruleConf.EdbInfoId
	moveDay := ruleConf.MoveDay
	startDate, _ := time.ParseInLocation(utils.FormatDate, ruleConf.StartDate, time.Local)
	endDate, _ := time.ParseInLocation(utils.FormatDate, ruleConf.EndDate, time.Local)

	//查询当前指标现有的数据
	edbInfo, err := data_manage.GetEdbInfoById(firstEdbInfoId)
	if err != nil {
		return
	}

	//第一个指标
	aDataList := make([]models.EdbDataList, 0)
	aDataMap := make(map[string]float64)
	{
		//第一个指标的数据列表
		var firstDataList []*models.EdbDataList
		switch edbInfo.EdbInfoType {
		case 0:
			firstDataList, err = models.GetEdbDataList(edbInfo.Source, edbInfo.EdbInfoId, ``, ``)
		case 1:
			_, firstDataList, _, _, err, _ = GetPredictDataListByPredictEdbInfoId(edbInfo.EdbInfoId, ``, ``, false)
		default:
			err = errors.New(fmt.Sprint("获取失败,指标类型异常", edbInfo.EdbInfoType))
		}
		if err != nil {
			return
		}
		aDataList, aDataMap = handleNhccData(firstDataList, moveDay)
	}

	//第二个指标
	bDataList := make([]models.EdbDataList, 0)
	bDataMap := make(map[string]float64)
	{
		bDataList, bDataMap = handleNhccData(secondDataList, 0)
	}

	if len(aDataList) <= 0 {
		err = errors.New("指标A没有数据")
		return
	}
	if len(bDataList) <= 0 {
		err = errors.New("指标B没有数据")
		return
	}
	// 拟合残差计算的结束日期判断
	{
		endAData := aDataList[len(aDataList)-1]
		tmpEndDate, tmpErr := time.ParseInLocation(utils.FormatDate, endAData.DataTime, time.Local)
		if tmpErr != nil {
			err = tmpErr
			return
		}
		// 如果A指标的最新数据日期早于拟合残差的结束日期,那么就用A指标的最新数据日期
		if tmpEndDate.Before(endDate) {
			endDate = tmpEndDate
		}
		endBData := bDataList[len(bDataList)-1]
		tmpEndDate, tmpErr = time.ParseInLocation(utils.FormatDate, endBData.DataTime, time.Local)
		if tmpErr != nil {
			err = tmpErr
			return
		}
		// 如果B指标的最新数据日期早于拟合残差的结束日期,那么就用A指标的最新数据日期
		if tmpEndDate.Before(endDate) {
			endDate = tmpEndDate
		}
	}

	// 计算线性方程公式
	var a, b float64
	{
		coordinateData := make([]utils.Coordinate, 0)
		for i := startDate; i.Before(endDate) || i.Equal(endDate); i = i.AddDate(0, 0, 1) {
			dateStr := i.Format(utils.FormatDate)
			xValue, ok := aDataMap[dateStr]
			if !ok {
				err = errors.New("指标A日期:" + dateStr + "数据异常,导致计算线性方程公式失败")
				return
			}
			yValue, ok := bDataMap[dateStr]
			if !ok {
				err = errors.New("指标B日期:" + dateStr + "数据异常,导致计算线性方程公式失败")
				return
			}
			tmpCoordinate := utils.Coordinate{
				X: xValue,
				Y: yValue,
			}
			coordinateData = append(coordinateData, tmpCoordinate)
		}
		a, b = utils.GetLinearResult(coordinateData)
	}

	if math.IsNaN(a) || math.IsNaN(b) {
		err = errors.New("线性方程公式生成失败")
		return
	}
	//fmt.Println("a:", a, ";======b:", b)

	//计算B’
	newBDataMap = make(map[string]float64)
	{
		//B’=aA+b
		aDecimal := decimal.NewFromFloat(a)
		bDecimal := decimal.NewFromFloat(b)
		for _, aData := range aDataList {
			xDecimal := decimal.NewFromFloat(aData.Value)
			val, _ := aDecimal.Mul(xDecimal).Add(bDecimal).RoundCeil(4).Float64()
			newBDataMap[aData.DataTime] = val
		}

	}
	return
}

// handleNhccData 处理拟合残差需要的数据
func handleNhccData(dataList []*models.EdbDataList, moveDay int) (newDataList []models.EdbDataList, dateDataMap map[string]float64) {
	dateMap := make(map[time.Time]float64)
	var minDate, maxDate time.Time
	dateDataMap = make(map[string]float64)

	for _, v := range dataList {
		currDate, _ := time.ParseInLocation(utils.FormatDate, v.DataTime, time.Local)
		if minDate.IsZero() || currDate.Before(minDate) {
			minDate = currDate
		}
		if maxDate.IsZero() || currDate.After(maxDate) {
			maxDate = currDate
		}
		dateMap[currDate] = v.Value
	}

	// 处理领先、滞后数据
	newDateMap := make(map[time.Time]float64)
	for currDate, value := range dateMap {
		newDate := currDate.AddDate(0, 0, moveDay)
		newDateMap[newDate] = value
	}
	minDate = minDate.AddDate(0, 0, moveDay)
	maxDate = maxDate.AddDate(0, 0, moveDay)

	// 开始平移天数
	dayNum := utils.GetTimeSubDay(minDate, maxDate)

	for i := 0; i <= dayNum; i++ {
		currDate := minDate.AddDate(0, 0, i)
		tmpValue, ok := newDateMap[currDate]
		if !ok {
			// 万一没有数据,那么就过滤当次循环
			if len(newDataList) <= 0 {
				continue
			}
			//找不到数据,那么就用前面的数据吧
			tmpValue = newDataList[len(newDataList)-1].Value
		}
		tmpData := models.EdbDataList{
			//EdbDataId: 0,
			DataTime: currDate.Format(utils.FormatDate),
			Value:    tmpValue,
		}
		dateDataMap[tmpData.DataTime] = tmpData.Value
		newDataList = append(newDataList, tmpData)
	}

	return
}